nifty_field.py 50.6 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
4
from __future__ import division
import numpy as np
import pylab as pl

5
6
from d2o import distributed_data_object, \
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
7

8
9
10
from nifty.config import about, \
    nifty_configuration as gc, \
    dependency_injector as gdi
csongor's avatar
csongor committed
11

12
13
14
from nifty.field_types import Field_type,\
                              Field_array

csongor's avatar
csongor committed
15
16
from nifty.nifty_core import space

csongor's avatar
csongor committed
17
import nifty.nifty_utilities as utilities
18
from nifty_random import random
csongor's avatar
csongor committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']


class field(object):
    """
        ..         ____   __             __          __
        ..       /   _/ /__/           /  /        /  /
        ..      /  /_   __   _______  /  /    ____/  /
        ..     /   _/ /  / /   __  / /  /   /   _   /
        ..    /  /   /  / /  /____/ /  /_  /  /_/  /
        ..   /__/   /__/  \______/  \___/  \______|  class

        Basic NIFTy class for fields.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar, ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by kwargs.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).


        Other Parameters
        ----------------
        random : string
            Indicates that the field values should be drawn from a certain
            distribution using a pseudo-random number generator.
            Supported distributions are:

            - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
            - "gau" (normal distribution with zero-mean and a given standard
                deviation or variance)
            - "syn" (synthesizes from a given power spectrum)
            - "uni" (uniform distribution over [vmin,vmax[)

        dev : scalar
            Sets the standard deviation of the Gaussian distribution
            (default=1).

        var : scalar
            Sets the variance of the Gaussian distribution, outranking the dev
            parameter (default=1).

        spec : {scalar, list, array, field, function}
            Specifies a power spectrum from which the field values should be
            synthesized (default=1). Can be given as a constant, or as an
            array with indvidual entries per mode.
        log : bool
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).

        vmin : scalar
            Sets the lower limit for the uniform distribution.
        vmax : scalar
            Sets the upper limit for the uniform distribution.

        Attributes
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar, ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by the keyword arguments.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).

    """

109
    def __init__(self, domain=None, val=None, codomain=None,
110
                 dtype=None, field_type=None, copy=False,
111
                 datamodel=None, comm=None, **kwargs):
csongor's avatar
csongor committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        """
            Sets the attributes for a field class instance.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar,ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by the keyword arguments.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).

        Returns
        -------
        Nothing

        """
        # If the given val was a field, try to cast it accordingly to the given
        # domain and codomain, etc...
        if isinstance(val, field):
            self._init_from_field(f=val,
                                  domain=domain,
                                  codomain=codomain,
                                  comm=comm,
                                  copy=copy,
                                  dtype=dtype,
143
                                  field_type=field_type,
csongor's avatar
csongor committed
144
145
146
147
148
149
150
151
152
                                  datamodel=datamodel,
                                  **kwargs)
        else:
            self._init_from_array(val=val,
                                  domain=domain,
                                  codomain=codomain,
                                  comm=comm,
                                  copy=copy,
                                  dtype=dtype,
153
                                  field_type=field_type,
csongor's avatar
csongor committed
154
155
156
157
                                  datamodel=datamodel,
                                  **kwargs)

    def _init_from_field(self, f, domain, codomain, comm, copy, dtype,
158
                         field_type, datamodel, **kwargs):
csongor's avatar
csongor committed
159
160
161
162
163
164
        # check domain
        if domain is None:
            domain = f.domain

        # check codomain
        if codomain is None:
csongor's avatar
csongor committed
165
            if self._check_codomain(domain, f.codomain):
csongor's avatar
csongor committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                codomain = f.codomain
            else:
                codomain = self.get_codomain(domain)

        # Check if the given field lives in a space which is compatible to the
        # given domain
        if f.domain != domain:
            # Try to transform the given field to the given domain/codomain
            f = f.transform(new_domain=domain,
                            new_codomain=codomain)

        self._init_from_array(domain=domain,
                              val=f.val,
                              codomain=codomain,
                              comm=comm,
                              copy=copy,
                              dtype=dtype,
                              datamodel=datamodel,
                              **kwargs)

    def _init_from_array(self, val, domain, codomain, comm, copy, dtype,
187
                         field_type, datamodel, **kwargs):
csongor's avatar
csongor committed
188
        # check domain
189
        self.domain = self._parse_domain(domain=domain)
190
        self.domain_axes_list = self._get_axes_list(self.domain)
csongor's avatar
csongor committed
191
192
193

        # check codomain
        if codomain is None:
194
            self.codomain = self._build_codomain(domain=self.domain)
195
196
197
        else:
            self.codomain = self._parse_codomain(codomain, self.domain)

198
199
        self.field_type = self._parse_field_type(field_type)
        self.field_type_axes_list = self._get_axes_list(self.field_type)
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        if dtype is None:
            dtype = self._infer_dtype(domain=self.domain,
                                      dtype=dtype,
                                      field_type=self.field_type)
        self.dtype = dtype

        if comm is not None:
            self.comm = self._parse_comm(comm)
        elif isinstance(val, distributed_data_object):
            self.comm = val.comm
        else:
            self.comm = gc['default_comm']

        if datamodel in DISTRIBUTION_STRATEGIES['all']:
            self.datamodel = datamodel
        elif isinstance(val, distributed_data_object):
            self.datamodel = val.distribution_strategy
        else:
            self.datamodel = gc['default_datamodel']
csongor's avatar
csongor committed
220
221
222

        if val is None:
            if kwargs == {}:
csongor's avatar
csongor committed
223
                val = self.cast(0)
csongor's avatar
csongor committed
224
            else:
csongor's avatar
csongor committed
225
226
227
                val = self.get_random_values(domain=self.domain,
                                             codomain=self.codomain,
                                             **kwargs)
csongor's avatar
csongor committed
228
229
        self.set_val(new_val=val, copy=copy)

230
231
232
233
234
    def _infer_dtype(self, domain=None, dtype=None, field_type=None):
        dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
235
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
236

csongor's avatar
csongor committed
237
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
csongor's avatar
csongor committed
238
239
        return dtype

240
    def _get_axes_list(self, things_with_shape):
csongor's avatar
csongor committed
241
        i = 0
242
243
        axes_list = []
        for thing in things_with_shape:
csongor's avatar
csongor committed
244
            l = []
245
            for j in range(len(thing.shape)):
csongor's avatar
csongor committed
246
247
                l += [i]
                i += 1
248
249
            axes_list += [tuple(l)]
        return axes_list
csongor's avatar
csongor committed
250

csongor's avatar
csongor committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    def _parse_comm(self, comm):
        # check if comm is a string -> the name of comm is given
        # -> Extract it from the mpi_module
        if isinstance(comm, str):
            if gc.validQ('default_comm', comm):
                result_comm = getattr(gdi[gc['mpi_module']], comm)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given communicator-name is not supported."))
        # check if the given comm object is an instance of default Intracomm
        else:
            if isinstance(comm, gdi[gc['mpi_module']].Intracomm):
                result_comm = comm
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: The given comm object is not an instance of the " +
                    "default-MPI-module's Intracomm Class."))
        return result_comm

270
    def _parse_domain(self, domain):
271
272
273
        if domain is None:
            domain = ()
        elif not isinstance(domain, tuple):
274
            domain = (domain,)
csongor's avatar
csongor committed
275
276
277
        for d in domain:
            if not isinstance(d, space):
                raise TypeError(about._errors.cstring(
278
279
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
280
281
        return domain

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def _parse_codomain(self, codomain, domain):
        if not isinstance(codomain, tuple):
            codomain = (codomain,)
        if len(domain) != len(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: domain and codomain do not have the same length."))
        for (cd, d) in zip(codomain, domain):
            if not isinstance(cd, space):
                raise TypeError(about._errors.cstring(
                    "ERROR: Given codomain contains something that is not a"
                    "nifty.space."))
            if not d.check_codomain(cd):
                raise ValueError(about._errors.cstring(
                    "ERROR: codomain contains a space that is not compatible "
                    "to its domain-counterpart."))
        return codomain
csongor's avatar
csongor committed
298

299
300
301
302
303
304
305
306
307
308
309
310
    def _parse_field_type(self, field_type):
        if field_type is None:
            field_type = ()
        elif not isinstance(field_type, tuple):
            field_type = (field_type,)
        for ft in field_type:
            if not isinstance(ft, Field_type):
                raise TypeError(about._errors.cstring(
                    "ERROR: Given object is not a nifty.Field_type."))
        return field_type

    def _build_codomain(self, domain):
311
312
        codomain = tuple(sp.get_codomain() for sp in domain)
        return codomain
csongor's avatar
csongor committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    def get_random_values(self, **kwargs):
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
            return self.cast(0)

        # Prepare the empty distributed_data_object
        sample = distributed_data_object(
                                    global_shape=self.shape,
                                    dtype=self.dtype)

        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
        if arg['random'] == 'pm1':
            sample.apply_generator(lambda s: random.pm1(dtype=self.dtype,
                                                        shape=s))

        # Case 2: normal distribution with zero-mean and a given standard
        #         deviation or variance
        elif arg['random'] == 'gau':
            std = arg['std']
            if np.isscalar(std) or std is None:
                processed_std = std
            else:
                try:
                    processed_std = sample.distributor. \
                        extract_local_data(std)
                except(AttributeError):
                    processed_std = std

            sample.apply_generator(lambda s: random.gau(dtype=self.dtype,
                                                        shape=s,
                                                        mean=arg['mean'],
                                                        std=processed_std))

        # Case 3: uniform distribution
        elif arg['random'] == 'uni':
            sample.apply_generator(lambda s: random.uni(dtype=self.dtype,
                                                        shape=s,
                                                        vmin=arg['vmin'],
                                                        vmax=arg['vmax']))
        return sample
csongor's avatar
csongor committed
355

csongor's avatar
csongor committed
356
    def __len__(self):
357
        return int(self.dim[0])
csongor's avatar
csongor committed
358

359
    def copy(self, domain=None, codomain=None, field_type=None, **kwargs):
csongor's avatar
csongor committed
360
        copied_val = self._unary_operation(self.get_val(), op='copy', **kwargs)
361
362
363
        new_field = self.copy_empty(domain=domain,
                                    codomain=codomain,
                                    field_type=field_type)
364
        new_field.set_val(new_val=copied_val, copy=True)
csongor's avatar
csongor committed
365
366
367
368
369
370
371
        return new_field

    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
csongor's avatar
csongor committed
372
        # copy domain, codomain and val
csongor's avatar
csongor committed
373
374
375
376
377
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = \
378
                    self._unary_operation(self.val, op='copy_empty')
csongor's avatar
csongor committed
379
380
381
        return new_field

    def copy_empty(self, domain=None, codomain=None, dtype=None, comm=None,
382
                   datamodel=None, field_type=None, **kwargs):
csongor's avatar
csongor committed
383
384
        if domain is None:
            domain = self.domain
385

csongor's avatar
csongor committed
386
387
        if codomain is None:
            codomain = self.codomain
388

csongor's avatar
csongor committed
389
390
        if dtype is None:
            dtype = self.dtype
391

csongor's avatar
csongor committed
392
393
        if comm is None:
            comm = self.comm
394

csongor's avatar
csongor committed
395
396
397
        if datamodel is None:
            datamodel = self.datamodel

398
399
400
401
        if field_type is None:
            field_type = self.field_type

        _fast_copyable = True
402
        for i in xrange(len(self.domain)):
403
404
405
406
407
408
            if self.domain[i] is not domain[i]:
                _fast_copyable = False
                break
            if self.codomain[i] is not codomain[i]:
                _fast_copyable = False
                break
409
410
411
412
413
414

        for i in xrange(len(self.field_type)):
            if self.field_type[i] is not field_type[i]:
                _fast_copyable = False
                break

415
416
        if (_fast_copyable and dtype == self.dtype and comm == self.comm and
                datamodel == self.datamodel and
417
                kwargs == {}):
csongor's avatar
csongor committed
418
419
420
            new_field = self._fast_copy_empty()
        else:
            new_field = field(domain=domain, codomain=codomain, dtype=dtype,
421
422
                              comm=comm, datamodel=datamodel,
                              field_type=field_type, **kwargs)
csongor's avatar
csongor committed
423
424
425
426
427
428
429
430
431
432
433
434
        return new_field

    def set_val(self, new_val=None, copy=False):
        """
            Resets the field values.

            Parameters
            ----------
            new_val : {scalar, ndarray}
                New field values either as a constant or an arbitrary array.

        """
435
436
437
438
        new_val = self.cast(new_val)
        if copy:
            new_val = self.unary_operation(new_val, op='copy')
        self.val = new_val
csongor's avatar
csongor committed
439
440
        return self.val

441
442
443
444
445
    def get_val(self, copy=False):
        if copy:
            return self.val.copy()
        else:
            return self.val
csongor's avatar
csongor committed
446
447

    def __getitem__(self, key):
csongor's avatar
csongor committed
448
449
450
451
        return self.val[key]

    def __setitem__(self, key, item):
        self.val[key] = item
csongor's avatar
csongor committed
452

453
454
    @property
    def shape(self):
455
456
457
458
459
460
461
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
462

463
        return global_shape
csongor's avatar
csongor committed
464

465
466
    @property
    def dim(self):
csongor's avatar
csongor committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        """
            Computes the (array) dimension of the underlying space.

            Parameters
            ----------
            split : bool
                Sets the output to be either split up per axis or
                in form of total number of field entries in all
                dimensions (default=False)

            Returns
            -------
            dim : {scalar, ndarray}
                Dimension of space.

        """
theos's avatar
theos committed
483
        return np.prod(self.shape)
csongor's avatar
csongor committed
484

485
486
487
488
489
490
    @property
    def dof(self):
        dof_tuple = ()
        dof_tuple += tuple(sp.dof for sp in self.domain)
        dof_tuple += tuple(ft.dof for ft in self.field_type)
        try:
491
            return reduce(lambda x, y: x * y, dof_tuple)
492
493
494
495
496
497
498
499
500
501
502
503
        except TypeError:
            return ()

    @property
    def dof_split(self):
        dof_tuple = ()
        dof_tuple += tuple(sp.dof_split for sp in self.domain)
        dof_tuple += tuple(ft.dof_split for ft in self.field_type)
        try:
            return reduce(lambda x, y: x + y, dof_tuple)
        except TypeError:
            return ()
csongor's avatar
csongor committed
504
505
506
507

    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
508
509
        else:
            dtype = np.dtype(dtype)
510

csongor's avatar
csongor committed
511
        casted_x = self._cast_to_d2o(x, dtype=dtype)
512
513

        for ind, sp in enumerate(self.domain):
514
515
516
517
518
519
            casted_x = sp.complement_cast(casted_x,
                                          axis=self.domain_axes_list[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
                                          axis=self.field_type_axes_list[ind])
520
521

        return casted_x
csongor's avatar
csongor committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

    def _cast_to_d2o(self, x, dtype=None, shape=None, **kwargs):
        """
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.

            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is
                lost during casting (default: False).
        """
        if isinstance(x, field):
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

        if shape is None:
theos's avatar
theos committed
553
            shape = self.shape
csongor's avatar
csongor committed
554
555
556
557
558
559
560
561

        # Case 1: x is a distributed_data_object
        if isinstance(x, distributed_data_object):
            to_copy = False

            # Check the shape
            if np.any(np.array(x.shape) != np.array(shape)):
                # Check if at least the number of degrees of freedom is equal
562
                if x.dim == self.dim:
csongor's avatar
csongor committed
563
564
565
566
567
568
569
570
571
572
573
574
                    try:
                        temp = x.copy_empty(global_shape=shape)
                        temp.set_local_data(x, copy=False)
                    except:
                        # If the number of dof is equal or 1, use np.reshape...
                        about.warnings.cflush(
                            "WARNING: Trying to reshape the data. This " +
                            "operation is expensive as it consolidates the " +
                            "full data!\n")
                        temp = x
                        temp = np.reshape(temp, shape)
                    # ... and cast again
csongor's avatar
csongor committed
575
                    return self._cast_to_d2o(temp, dtype=dtype, **kwargs)
csongor's avatar
csongor committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

                else:
                    raise ValueError(about._errors.cstring(
                        "ERROR: Data has incompatible shape!"))

            # Check the dtype
            if x.dtype != dtype:
                if x.dtype > dtype:
                    about.warnings.cflush(
                        "WARNING: Datatypes are of conflicting precision " +
                        "(own: " + str(dtype) + " <> foreign: " +
                        str(x.dtype) + ") and will be casted! Potential " +
                        "loss of precision!\n")
                to_copy = True

            # Check the distribution_strategy
            if x.distribution_strategy != self.datamodel:
                to_copy = True

            if to_copy:
                temp = x.copy_empty(dtype=dtype,
                                    distribution_strategy=self.datamodel)
                temp.set_data(to_key=(slice(None),),
                              data=x,
                              from_key=(slice(None),))
                temp.hermitian = x.hermitian
                x = temp

            return x

        # Case 2: x is something else
        # Use general d2o casting
        else:
            x = distributed_data_object(x,
theos's avatar
theos committed
610
                                        global_shape=self.shape,
csongor's avatar
csongor committed
611
612
613
614
615
                                        dtype=dtype,
                                        distribution_strategy=self.datamodel)
            # Cast the d2o
            return self.cast(x, dtype=dtype)

616
    def weight(self, power=1, inplace=False, spaces=None):
csongor's avatar
csongor committed
617
618
619
620
621
622
623
624
625
626
        """
            Returns the field values, weighted with the volume factors to a
            given power. The field values will optionally be overwritten.

            Parameters
            ----------
            power : scalar, *optional*
                Specifies the optional power coefficient to which the field
                values are taken (default=1).

627
            inplace : bool, *optional*
csongor's avatar
csongor committed
628
629
630
631
632
                Whether to overwrite the field values or not (default: False).

            Returns
            -------
            field   : field, *optional*
633
                If inplace is False, the weighted field is returned.
csongor's avatar
csongor committed
634
635
636
                Otherwise, nothing is returned.

        """
637
        if inplace:
csongor's avatar
csongor committed
638
639
640
641
            new_field = self
        else:
            new_field = self.copy_empty()

642
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
643

csongor's avatar
csongor committed
644
        if spaces is None:
theos's avatar
theos committed
645
            spaces = range(len(self.shape))
csongor's avatar
csongor committed
646

647
648
649
650
651
652
        for ind, sp in enumerate(self.domain):
            new_val = sp.calc_weight(new_val,
                                     power=power,
                                     axes=self.domain_axes_list[ind])

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
653
654
        return new_field

655
    def norm(self, q=2):
csongor's avatar
csongor committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
670
        if q == 2:
671
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
672
        else:
673
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
674

675
    def dot(self, x=None, bare=False):
csongor's avatar
csongor committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        """
            Computes the inner product of the field with a given object
            implying the correct volume factor needed to reflect the
            discretization of the continuous fields.

            Parameters
            ----------
            x : {scalar, ndarray, field}, *optional*
                The object with which the inner product is computed
                (default=None).

            Returns
            -------
            dot : scalar
                The result of the inner product.

        """
        # Case 1: x equals None
        if x is None:
            return None

        # Case 2: x is a field
        elif isinstance(x, field):
699
700
            for ind, sp in enumerate(self.domain):
                assert sp == x.domain[ind]
csongor's avatar
csongor committed
701
702
703

            # whether the domain matches exactly or not:
            # extract the data from x and try to dot with this
704
            return self.dot(x=x.get_val(), bare=bare)
csongor's avatar
csongor committed
705
706
707
708
709

        # Case 3: x is something else
        else:

            # Compute the dot respecting the fact of discrete/continous spaces
710
711
712
713
714
            if not bare:
                y = self.weight(power=1)
            else:
                y = self
            y = y.get_val(copy=False)
csongor's avatar
csongor committed
715

716
717
            # Cast the input in order to cure dtype and shape differences
            x = self.cast(x)
csongor's avatar
csongor committed
718

719
            dotted = x.conjugate() * y
csongor's avatar
csongor committed
720

721
722
723
724
            for ind in range(-1, -len(self.field_type_axes_list)-1, -1):
                dotted = self.field_type[ind].dot_contraction(
                            dotted,
                            axes=self.field_type_axes_list[ind])
csongor's avatar
csongor committed
725

726
727
728
729
730
            for ind in range(-1, -len(self.domain_axes_list)-1, -1):
                dotted = self.domain[ind].dot_contraction(
                            dotted,
                            axes=self.domain_axes_list[ind])
            return dotted
csongor's avatar
csongor committed
731

732
733
    def vdot(self, *args, **kwargs):
        return self.dot(*args, **kwargs)
csongor's avatar
csongor committed
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#    def outer_dot(self, x=1, axis=None):
#
#        # Use the fact that self.val is a numpy array of dtype np.object
#        # -> The shape casting, etc... can be done by numpy
#        # If ishape == (), self.val will be multiplied with x directly.
#        if self.ishape == ():
#            return self * x
#        new_val = np.sum(self.get_val() * x, axis=axis)
#        # if axis != None, the contraction was not overarching
#        if np.dtype(new_val.dtype).type == np.object_:
#            new_field = self.copy_empty(ishape=new_val.shape)
#        else:
#            new_field = self.copy_empty(ishape=())
#        new_field.set_val(new_val=new_val)
#        return new_field
#
#    def tensor_product(self, x=None):
#        if x is None:
#            return self
#        elif np.isscalar(x) == True:
#            return self * x
#        else:
#            if self.ishape == ():
#                temp_val = self.get_val()
#                old_val = np.empty((1,), dtype=np.object)
#                old_val[0] = temp_val
#            else:
#                old_val = self.get_val()
#
#            new_val = np.tensordot(old_val, x, axes=0)
#
#            if self.ishape == ():
#                new_val = new_val[0]
#            new_field = self.copy_empty(ishape=new_val.shape)
#            new_field.set_val(new_val=new_val)
#
#            return new_field
csongor's avatar
csongor committed
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

788
789
        new_val = self.get_val(copy=False)
        new_val = self._unary_operation(new_val, op='conjugate')
csongor's avatar
csongor committed
790

791
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
792
793
794

        return work_field

795
796
    def transform(self, new_domain=None, new_codomain=None, spaces=None,
                  **kwargs):
csongor's avatar
csongor committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
        """
            Computes the transform of the field using the appropriate conjugate
            transformation.

            Parameters
            ----------
            codomain : space, *optional*
                Domain of the transform of the field (default:self.codomain)

            overwrite : bool, *optional*
                Whether to overwrite the field or not (default: False).

            Other Parameters
            ----------------
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            field : field, *optional*
                If overwrite is False, the transformed field is returned.
                Otherwise, nothing is returned.

        """
        if new_domain is None:
            new_domain = self.codomain

824
        # try to recycle the old domain
csongor's avatar
csongor committed
825
        if new_codomain is None:
826
827
828
829
            try:
                new_codomain = self._parse_codomain(self.domain, new_domain)
            except ValueError:
                new_codomain = self._build_codomain(new_domain)
csongor's avatar
csongor committed
830
        else:
831
832
833
834
835
836
837
838
839
            new_codomain = self._parse_codomain(new_codomain, new_domain)

        try:
            spaces_iterator = iter(spaces)
        except TypeError:
            if spaces is None:
                spaces_iterator = xrange(len(self.shape))
            else:
                spaces_iterator = (spaces, )
csongor's avatar
csongor committed
840

csongor's avatar
csongor committed
841
        new_val = self.get_val()
842
843
844
845
846
847
848
849
850
        for ind in spaces_iterator:
                sp = self.domain[ind]
                new_val = sp.calc_transform(new_val,
                                            codomain=new_domain[ind],
                                            axes=self.domain_axes_list[ind],
                                            **kwargs)

        return_field = self.copy_empty(domain=new_domain,
                                       codomain=new_codomain)
csongor's avatar
csongor committed
851
852
853
        return_field.set_val(new_val=new_val, copy=False)
        return return_field

854
    def smooth(self, sigma=0, spaces=None, **kwargs):
csongor's avatar
csongor committed
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        """
            Smoothes the field by convolution with a Gaussian kernel.

            Parameters
            ----------
            sigma : scalar, *optional*
                standard deviation of the Gaussian kernel specified in units of
                length in position space (default: 0)

            overwrite : bool, *optional*
                Whether to overwrite the field or not (default: False).

            Other Parameters
            ----------------
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            field : field, *optional*
                If overwrite is False, the transformed field is returned.
                Otherwise, nothing is returned.

        """
879
880
881
882
883
884
885
886
887
        new_field = self.copy_empty()

        try:
            spaces_iterator = iter(spaces)
        except TypeError:
            if spaces is None:
                spaces_iterator = xrange(len(self.shape))
            else:
                spaces_iterator = (spaces, )
csongor's avatar
csongor committed
888

csongor's avatar
csongor committed
889
        new_val = self.get_val()
890
891
892
893
894
895
        for ind in spaces_iterator:
            sp = self.domain[ind]
            new_val = sp.calc_smooth(new_val,
                                     sigma=sigma,
                                     axes=self.domain_axes_list[ind],
                                     **kwargs)
csongor's avatar
csongor committed
896

897
        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        return new_field

    def power(self, **kwargs):
        """
            Computes the power spectrum of the field values.

            Other Parameters
            ----------------
            pindex : ndarray, *optional*
                Specifies the indexing array for the distribution of
                indices in conjugate space (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : scalar
                Number of degrees of freedom per irreducible band
                (default=None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on
                logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to
                ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            spec : ndarray
                Returns the power spectrum.

        """
939
        if ("codomain" in kwargs):
csongor's avatar
csongor committed
940
941
942
            kwargs.__delitem__("codomain")
            about.warnings.cprint("WARNING: codomain was removed from kwargs.")

943
944
945
946
947
948
949
950
#        power_spectrum = self.get_val()
#        for ind, space in self.domain:
#            power_spectrum = space.calc_smooth(power_spectrum,
#                                               codomain=self.codomain,
#                                               axis=self.axes_list[ind],
#                                               **kwargs)
#
#        return power_spectrum
csongor's avatar
csongor committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

    def hat(self):
        """
            Translates the field into a diagonal operator.

            Returns
            -------
            D : operator
                The new diagonal operator instance.

        """
        from nifty.operators.nifty_operators import diagonal_operator
        return diagonal_operator(domain=self.domain,
                                 diag=self.get_val(),
                                 bare=False,
                                 ishape=self.ishape)

    def inverse_hat(self):
        """
            Translates the inverted field into a diagonal operator.

            Returns
            -------
            D : operator
                The new diagonal operator instance.

        """
csongor's avatar
csongor committed
978
        any_zero_Q = np.any(map(lambda z: (z == 0), self.get_val()))
csongor's avatar
csongor committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        if any_zero_Q:
            raise AttributeError(
                about._errors.cstring("ERROR: singular operator."))
        else:
            from nifty.operators.nifty_operators import diagonal_operator
            return diagonal_operator(domain=self.domain,
                                     diag=(1 / self).get_val(),
                                     bare=False,
                                     ishape=self.ishape)

    def plot(self, **kwargs):
        """
            Plots the field values using matplotlib routines.

            Other Parameters
            ----------------
            title : string
                Title of the plot (default= "").
            vmin : scalar
                Minimum value displayed (default=min(x)).
            vmax : scalar
                Maximum value displayed (default=max(x)).
            power : bool
                Whether to plot the power spectrum or the array (default=None).
            unit : string
                The unit of the field values (default="").
            norm : scalar
                A normalization (default=None).
            cmap : cmap
                A color map (default=None).
            cbar : bool
                Whether to show the color bar or not (default=True).
            other : {scalar, ndarray, field}
                Object or tuple of objects to be added (default=None).
            legend : bool
                Whether to show the legend or not (default=False).
            mono : bool
                Whether to plot the monopol of the power spectrum or not
                (default=True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {scalar, ndarray, field}
                object indicating some confidence intervall (default=None).
            iter : scalar
                Number of iterations (default: 0).
            kindex : scalar
                The spectral index per irreducible band (default=None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on
                logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to
                ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).

            Notes
            -----
            The applicability of the keyword arguments depends on the
            respective space on which the field is defined. Confer to the
            corresponding :py:meth:`get_plot` method.

        """
        # if a save path is given, set pylab to not-interactive
        remember_interactive = pl.isinteractive()
        pl.matplotlib.interactive(not bool(kwargs.get("save", False)))

        if "codomain" in kwargs:
            kwargs.__delitem__("codomain")
            about.warnings.cprint("WARNING: codomain was removed from kwargs.")

        # draw/save the plot(s)
        self.domain.get_plot(self.val, codomain=self.codomain, **kwargs)

        # restore the pylab interactiveness
        pl.matplotlib.interactive(remember_interactive)

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
1071
1072
1073
1074
1075
1076
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean) + \
               "\n- codomain      = " + repr(self.codomain) + \
               "\n- ishape          = " + str(self.ishape)
csongor's avatar
csongor committed
1077

csongor's avatar
csongor committed
1078
1079
1080
1081
1082
1083
    def sum(self, **kwargs):
        return self._unary_operation(self.get_val(), op='sum', **kwargs)

    def prod(self, **kwargs):
        return self._unary_operation(self.get_val(), op='prod', **kwargs)

csongor's avatar
csongor committed
1084
1085
    def all(self, **kwargs):
        return self._unary_operation(self.get_val(), op='all', **kwargs)
csongor's avatar
csongor committed
1086

csongor's avatar
csongor committed
1087
1088
1089
    def any(self, **kwargs):
        return self._unary_operation(self.get_val(), op='any', **kwargs)

csongor's avatar
csongor committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    def min(self, ignore=False, **kwargs):
        """
            Returns the minimum of the field values.

            Parameters
            ----------
            ignore : bool
                Whether to ignore NANs or not (default: False).

            Returns
            -------
            amin : {scalar, ndarray}
                Minimum field value.

            See Also
            --------
            np.amin, np.nanmin

        """
csongor's avatar
csongor committed
1109
        return self._unary_operation(self.get_val(), op='amin', **kwargs)
csongor's avatar
csongor committed
1110
1111

    def nanmin(self, **kwargs):
csongor's avatar
csongor committed
1112
        return self._unary_operation(self.get_val(), op='nanmin', **kwargs)
csongor's avatar
csongor committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

    def max(self, **kwargs):
        """
            Returns the maximum of the field values.

            Parameters
            ----------
            ignore : bool
                Whether to ignore NANs or not (default: False).

            Returns
            -------
            amax : {scalar, ndarray}
                Maximum field value.

            See Also
            --------
            np.amax, np.nanmax

        """
csongor's avatar
csongor committed
1133
        return self._unary_operation(self.get_val(), op='amax', **kwargs)
csongor's avatar
csongor committed
1134
1135

    def nanmax(self, **kwargs):
csongor's avatar
csongor committed
1136
        return self._unary_operation(self.get_val(), op='nanmax', **kwargs)
csongor's avatar
csongor committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

    def median(self, **kwargs):
        """
            Returns the median of the field values.

            Returns
            -------
            med : scalar
                Median field value.

            See Also
            --------
            np.median

        """
csongor's avatar
csongor committed
1152
        return self._unary_operation(self.get_val(), op='median',
csongor's avatar
csongor committed
1153
                                     **kwargs)
csongor's avatar
csongor committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

    def mean(self, **kwargs):
        """
            Returns the mean of the field values.

            Returns
            -------
            mean : scalar
                Mean field value.

            See Also
            --------
            np.mean

        """
csongor's avatar
csongor committed
1169
        return self._unary_operation(self.get_val(), op='mean',
csongor's avatar
csongor committed
1170
                                     **kwargs)
csongor's avatar
csongor committed
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

    def std(self, **kwargs):
        """
            Returns the standard deviation of the field values.

            Returns
            -------
            std : scalar
                Standard deviation of the field values.

            See Also
            --------
            np.std

        """
csongor's avatar
csongor committed
1186
        return self._unary_operation(self.get_val(), op='std',
csongor's avatar
csongor committed
1187
                                     **kwargs)
csongor's avatar
csongor committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202

    def var(self, **kwargs):
        """
            Returns the variance of the field values.

            Returns
            -------
            var : scalar
                Variance of the field values.

            See Also
            --------
            np.var

        """
csongor's avatar
csongor committed
1203
        return self._unary_operation(self.get_val(), op='var',
csongor's avatar
csongor committed
1204
                                     **kwargs)
csongor's avatar
csongor committed
1205

1206
    def argmin(self, split=False, **kwargs):
csongor's avatar
csongor committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        """
            Returns the index of the minimum field value.

            Parameters
            ----------
            split : bool
                Whether to split (unravel) the flat index or not; does not
                apply to multiple indices along some axis (default: True).

            Returns
            -------
            ind : {integer, tuple, array}
                Index of the minimum field value being an integer for
                one-dimensional fields, a tuple for multi-dimensional fields,
                and an array in case minima along some axis are requested.

            See Also
            --------
            np.argmax, np.argmin

        """
        if split:
csongor's avatar
csongor committed
1229
            return self._unary_operation(self.get_val(), op='argmin_nonflat',
csongor's avatar
csongor committed
1230
                                         **kwargs)
csongor's avatar
csongor committed
1231
        else:
csongor's avatar
csongor committed
1232
            return self._unary_operation(self.get_val(), op='argmin',
csongor's avatar
csongor committed
1233
                                         **kwargs)
csongor's avatar
csongor committed
1234

1235
    def argmax(self, split=False, **kwargs):
csongor's avatar
csongor committed
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
        """
            Returns the index of the maximum field value.

            Parameters
            ----------
            split : bool
                Whether to split (unravel) the flat index or not; does not
                apply to multiple indices along some axis (default: True).

            Returns
            -------
            ind : {integer, tuple, array}
                Index of the maximum field value being an integer for
                one-dimensional fields, a tuple for multi-dimensional fields,
                and an array in case maxima along some axis are requested.

            See Also
            --------
            np.argmax, np.argmin

        """
        if split:
csongor's avatar
csongor committed
1258
            return self._unary_operation(self.get_val(), op='argmax_nonflat',
csongor's avatar
csongor committed
1259
                                         **kwargs)
csongor's avatar
csongor committed
1260
        else:
csongor's avatar
csongor committed
1261
            return self._unary_operation(self.get_val(), op='argmax',
csongor's avatar
csongor committed
1262
                                         **kwargs)
csongor's avatar
csongor committed
1263
1264
1265
1266
1267

    # TODO: Implement the full range of unary and binary operotions

    def __pos__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1268
        new_val = self._unary_operation(self.get_val(), op='pos')
csongor's avatar
csongor committed
1269
1270
1271
1272
1273
        new_field.set_val(new_val=new_val)
        return new_field

    def __neg__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1274
        new_val = self._unary_operation(self.get_val(), op='neg')
csongor's avatar
csongor committed
1275
1276
1277
1278
1279
        new_field.set_val(new_val=new_val)
        return new_field

    def __abs__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1280
        new_val = self._unary_operation(self.get_val(), op='abs')
csongor's avatar
csongor committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        new_field.set_val(new_val=new_val)
        return new_field

    def _binary_helper(self, other, op='None', inplace=False):
        # if other is a field, make sure that the domains match
        if isinstance(other, field):
            other = field(domain=self.domain,
                          val=other,
                          codomain=self.codomain,
                          copy=False)
        try:
            other_val = other.get_val()
        except AttributeError:
            other_val = other

        # bring other_val into the right shape
1297
        other_val = self._cast_to_d2o(other_val)
csongor's avatar
csongor committed
1298

csongor's avatar
csongor committed
1299
        new_val = map(
1300
            lambda z1, z2: self._binary_operation(z1, z2, op=op, cast=0),
csongor's avatar
csongor committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
            self.get_val(),
            other_val)

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

        working_field.set_val(new_val=new_val)
        return working_field

csongor's avatar
csongor committed
1312
    def _unary_operation(self, x, op='None', axis=None, **kwargs):
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are

        """
        translation = {'pos': lambda y: getattr(y, '__pos__')(),
                       'neg': lambda y: getattr(y, '__neg__')(),
                       'abs': lambda y: getattr(y, '__abs__')(),
                       'real': lambda y: getattr(y, 'real'),
                       'imag': lambda y: getattr(y, 'imag'),
                       'nanmin': lambda y: getattr(y, 'nanmin')(axis=axis),
                       'amin': lambda y: getattr(y, 'amin')(axis=axis),
                       'nanmax': lambda y: getattr(y, 'nanmax')(axis=axis),
                       'amax': lambda y: getattr(y, 'amax')(axis=axis),
                       'median': lambda y: getattr(y, 'median')(axis=axis),
                       'mean': lambda y: getattr(y, 'mean')(axis=axis),
                       'std': lambda y: getattr(y, 'std')(axis=axis),
                       'var': lambda y: getattr(y, 'var')(axis=axis),
                       'argmin_nonflat': lambda y: getattr(y, 'argmin_nonflat')(
                           axis=axis),
                       'argmin': lambda y: getattr(y, 'argmin')(axis=axis),
                       'argmax_nonflat': lambda y: getattr(y, 'argmax_nonflat')(
                           axis=axis),
                       'argmax': lambda y: getattr(y, 'argmax')(axis=axis),
                       'conjugate': lambda y: getattr(y, 'conjugate')(),
                       'sum': lambda y: getattr(y, 'sum')(axis=axis),
                       'prod': lambda y: getattr(y, 'prod')(axis=axis),
                       'unique': lambda y: getattr(y, 'unique')(),
                       'copy': lambda y: getattr(y, 'copy')(),
                       'copy_empty': lambda y: getattr(y, 'copy_empty')(),
                       'isnan': lambda y: getattr(y, 'isnan')(),
                       'isinf': lambda y: getattr(y, 'isinf')(),
                       'isfinite': lambda y: getattr(y, 'isfinite')(),
                       'nan_to_num': lambda y: getattr(y, 'nan_to_num')(),
                       'all': lambda y: getattr(y, 'all')(axis=axis),
                       'any': lambda y: getattr(y, 'any')(axis=axis),
                       'None': lambda y: y}

        return translation[op](x, **kwargs)

1353
    def _binary_operation(self, x, y, op='None', cast=0):
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

        translation = {'add': lambda z: getattr(z, '__add__'),
                       'radd': lambda z: getattr(z, '__radd__'),
                       'iadd': lambda z: getattr(z, '__iadd__'),
                       'sub': lambda z: getattr(z, '__sub__'),
                       'rsub': lambda z: getattr(z, '__rsub__'),
                       'isub': lambda z: getattr(z, '__isub__'),
                       'mul': lambda z: getattr(z, '__mul__'),
                       'rmul': lambda z: getattr(z, '__rmul__'),
                       'imul': lambda z: getattr(z, '__imul__'),
                       'div': lambda z: getattr(z, '__div__'),
                       'rdiv': lambda z: getattr(z, '__rdiv__'),
                       'idiv': lambda z: getattr(z, '__idiv__'),
                       'pow': lambda z: getattr(z, '__pow__'),
                       'rpow': lambda z: getattr(z, '__rpow__'),
                       'ipow': lambda z: getattr(z, '__ipow__'),
                       'ne': lambda z: getattr(z, '__ne__'),
                       'lt': lambda z: getattr(z, '__lt__'),
                       'le': lambda z: getattr(z, '__le__'),
                       'eq': lambda z: getattr(z, '__eq__'),
                       'ge': lambda z: getattr(z, '__ge__'),
                       'gt': lambda z: getattr(z, '__gt__'),
                       'None': lambda z: lambda u: u}

        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
            y = self.cast(y)

        return translation[op](x)(y)

csongor's avatar
csongor committed
1385
1386
    def __add__(self, other):
        return self._binary_helper(other, op='add')
1387

csongor's avatar
csongor committed
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    __radd__ = __add__

    def __iadd__(self, other):
        return self._binary_helper(other, op='iadd', inplace=True)

    def __sub__(self, other):
        return self._binary_helper(other, op='sub')

    def __rsub__(self, other):
        return self._binary_helper(other, op='rsub')

    def __isub__(self, other):
        return self._binary_helper(other, op='isub', inplace=True)

    def __mul__(self, other):
        return self._binary_helper(other, op='mul')
1404

csongor's avatar
csongor committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    __rmul__ = __mul__

    def __imul__(self, other):
        return self._binary_helper(other, op='imul', inplace=True)

    def __div__(self, other):
        return self._binary_helper(other, op='div')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='rdiv')

    def __idiv__(self, other):
        return self._binary_helper(other, op='idiv', inplace=True)
1418

csongor's avatar
csongor committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
    __truediv__ = __div__
    __itruediv__ = __idiv__

    def __pow__(self, other):
        return self._binary_helper(other, op='pow')

    def __rpow__(self, other):
        return self._binary_helper(other, op='rpow')

    def __ipow__(self, other):
        return self._binary_helper(other, op='ipow', inplace=True)

    def __lt__(self, other):
        return self._binary_helper(other, op='lt')

    def __le__(self, other):
        return self._binary_helper(other, op='le')

    def __ne__(self, other):
        if other is None:
            return True
        else:
            return self._binary_helper(other, op='ne')

    def __eq__(self, other):
        if other is None:
            return False
        else:
            return self._binary_helper(other, op='eq')

    def __ge__(self, other):
        return self._binary_helper(other, op='ge')

    def __gt__(self, other):
        return self._binary_helper(other, op='gt')

1455

csongor's avatar
csongor committed
1456
1457
1458
class EmptyField(field):
    def __init__(self):
        pass