descent_minimizers.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19
from __future__ import absolute_import, division, print_function
20

21
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22

23
from ..compat import *
24
from ..logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
25
from .line_search_strong_wolfe import LineSearchStrongWolfe
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from .minimizer import Minimizer


class DescentMinimizer(Minimizer):
    """ A base class used by gradient methods to find a local minimum.

    Descent minimization methods are used to find a local minimum of a scalar
    function by following a descent direction. This class implements the
    minimization procedure once a descent direction is known. The descent
    direction has to be implemented separately.

    Parameters
    ----------
    controller : IterationController
        Object that decides when to terminate the minimization.
    line_searcher : callable *optional*
        Function which infers the step size in the descent direction
        (default : LineSearchStrongWolfe()).
    """

    def __init__(self, controller, line_searcher=LineSearchStrongWolfe()):
        self._controller = controller
        self.line_searcher = line_searcher

    def __call__(self, energy):
        """ Performs the minimization of the provided Energy functional.

        Parameters
        ----------
        energy : Energy
           Energy object which provides value, gradient and metric at a
           specific position in parameter space.

        Returns
        -------
        Energy
            Latest `energy` of the minimization.
        int
            Can be controller.CONVERGED or controller.ERROR

        Notes
        -----
        The minimization is stopped if
            * the controller returns controller.CONVERGED or controller.ERROR,
            * a perfectly flat point is reached,
            * according to the line-search the minimum is found,
        """
        f_k_minus_1 = None
        controller = self._controller
        status = controller.start(energy)
        if status != controller.CONTINUE:
            return energy, status

        while True:
            # check if position is at a flat point
            if energy.gradient_norm == 0:
                return energy, controller.CONVERGED

            # compute a step length that reduces energy.value sufficiently
            new_energy, success = self.line_searcher.perform_line_search(
                energy=energy, pk=self.get_descent_direction(energy),
                f_k_minus_1=f_k_minus_1)
            if not success:
                self.reset()

            f_k_minus_1 = energy.value

            if new_energy.value > energy.value:
                logger.error("Error: Energy has increased")
                return energy, controller.ERROR

            if new_energy.value == energy.value:
                logger.warning(
                    "Warning: Energy has not changed. Assuming convergence...")
                return new_energy, controller.CONVERGED

            energy = new_energy
            status = self._controller.check(energy)
            if status != controller.CONTINUE:
                return energy, status

    def reset(self):
        pass

    def get_descent_direction(self, energy):
        """ Calculates the next descent direction.

        Parameters
        ----------
        energy : Energy
            An instance of the Energy class which shall be minimized. The
            position of `energy` is used as the starting point of minimization.

        Returns
        -------
        Field
           The descent direction.
        """
        raise NotImplementedError


class SteepestDescent(DescentMinimizer):
    """ Implementation of the steepest descent minimization scheme.

    Also known as 'gradient descent'. This algorithm simply follows the
    functional's gradient for minimization.
    """

    def get_descent_direction(self, energy):
        return -energy.gradient


class RelaxedNewton(DescentMinimizer):
    """ Calculates the descent direction according to a Newton scheme.

    The descent direction is determined by weighting the gradient at the
    current parameter position with the inverse local metric.
    """

    def __init__(self, controller, line_searcher=None):
        if line_searcher is None:
            line_searcher = LineSearchStrongWolfe(
                preferred_initial_step_size=1.)
        super(RelaxedNewton, self).__init__(controller=controller,
                                            line_searcher=line_searcher)

    def get_descent_direction(self, energy):
        return -energy.metric.inverse_times(energy.gradient)


class L_BFGS(DescentMinimizer):
    def __init__(self, controller, line_searcher=LineSearchStrongWolfe(),
                 max_history_length=5):
        super(L_BFGS, self).__init__(controller=controller,
                                     line_searcher=line_searcher)
        self.max_history_length = max_history_length

    def __call__(self, energy):
        self.reset()
        return super(L_BFGS, self).__call__(energy)

    def reset(self):
        self._k = 0
        self._s = [None]*self.max_history_length
        self._y = [None]*self.max_history_length

    def get_descent_direction(self, energy):
        x = energy.position
        s = self._s
        y = self._y
        k = self._k
        maxhist = self.max_history_length
        gradient = energy.gradient

        nhist = min(k, maxhist)
        alpha = [None]*maxhist
        p = -gradient
        if k > 0:
            idx = (k-1) % maxhist
            s[idx] = x-self._lastx
            y[idx] = gradient-self._lastgrad
        if nhist > 0:
            for i in range(k-1, k-nhist-1, -1):
                idx = i % maxhist
                alpha[idx] = s[idx].vdot(p)/s[idx].vdot(y[idx])
                p = p - alpha[idx]*y[idx]
            idx = (k-1) % maxhist
            fact = s[idx].vdot(y[idx]) / y[idx].vdot(y[idx])
            if fact <= 0.:
                logger.error("L-BFGS curvature not positive definite!")
            p = p*fact
            for i in range(k-nhist, k):
                idx = i % maxhist
                beta = y[idx].vdot(p) / s[idx].vdot(y[idx])
                p = p + (alpha[idx]-beta)*s[idx]
        self._lastx = x
        self._lastgrad = gradient
        self._k += 1
        return p
Theo Steininger's avatar
Theo Steininger committed
205
206


207
class VL_BFGS(DescentMinimizer):
Martin Reinecke's avatar
Martin Reinecke committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    """Implementation of the Vector-free L-BFGS minimization scheme.

    Find the descent direction by using the inverse Hessian.
    Instead of storing the whole matrix, it stores only the last few
    updates, which are used to do operations requiring the inverse
    Hessian product. The updates are represented in a new basis to optimize
    the algorithm.

    References
    ----------
    W. Chen, Z. Wang, J. Zhou, "Large-scale L-BFGS using MapReduce", 2014,
    Microsoft
    """

Martin Reinecke's avatar
Martin Reinecke committed
222
223
    def __init__(self, controller, line_searcher=LineSearchStrongWolfe(),
                 max_history_length=5):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
224
225
        super(VL_BFGS, self).__init__(controller=controller,
                                      line_searcher=line_searcher)
226
227
        self.max_history_length = max_history_length

228
    def __call__(self, energy):
229
        self._information_store = None
230
        return super(VL_BFGS, self).__call__(energy)
231

Martin Reinecke's avatar
stage 1    
Martin Reinecke committed
232
233
234
    def reset(self):
        self._information_store = None

235
    def get_descent_direction(self, energy):
236
237
        x = energy.position
        gradient = energy.gradient
238
239
240
241
        # initialize the information store if it doesn't already exist
        try:
            self._information_store.add_new_point(x, gradient)
        except AttributeError:
Martin Reinecke's avatar
Martin Reinecke committed
242
243
            self._information_store = _InformationStore(
                self.max_history_length, x0=x, gradient=gradient)
244
245
246
247

        b = self._information_store.b
        delta = self._information_store.delta

248
        descent_direction = delta[0] * b[0]
Martin Reinecke's avatar
Martin Reinecke committed
249
        for i in range(1, len(delta)):
250
            descent_direction = descent_direction + delta[i]*b[i]
251

252
        return descent_direction
Theo Steininger's avatar
Theo Steininger committed
253
254


Martin Reinecke's avatar
Martin Reinecke committed
255
class _InformationStore(object):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
256
    """Class for storing a list of past updates.
257

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
258
259
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
260
    max_history_length : int
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
261
262
263
264
265
        Maximum number of stored past updates.
    x0 : Field
        Initial position in variable space.
    gradient : Field
        Gradient at position x0.
266

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
267
268
    Attributes
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
269
    max_history_length : int
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
270
271
        Maximum number of stored past updates.
    s : List
Martin Reinecke's avatar
Martin Reinecke committed
272
        Circular buffer of past position differences, which are Fields.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
273
    y : List
Martin Reinecke's avatar
Martin Reinecke committed
274
        Circular buffer of past gradient differences, which are Fields.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
275
    last_x : Field
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
276
        Latest position in variable space.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
277
    last_gradient : Field
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
278
        Gradient at latest position.
Martin Reinecke's avatar
Martin Reinecke committed
279
    k : int
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
280
        Number of updates that have taken place
Martin Reinecke's avatar
Martin Reinecke committed
281
    ss : numpy.ndarray
Martin Reinecke's avatar
Martin Reinecke committed
282
        2D circular buffer of scalar products between different elements of s.
Martin Reinecke's avatar
Martin Reinecke committed
283
    sy : numpy.ndarray
Martin Reinecke's avatar
Martin Reinecke committed
284
        2D circular buffer of scalar products between elements of s and y.
Martin Reinecke's avatar
Martin Reinecke committed
285
    yy : numpy.ndarray
Martin Reinecke's avatar
Martin Reinecke committed
286
        2D circular buffer of scalar products between different elements of y.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
287
    """
Philipp Arras's avatar
Philipp Arras committed
288

289
290
    def __init__(self, max_history_length, x0, gradient):
        self.max_history_length = max_history_length
291
292
        self.s = [None]*max_history_length
        self.y = [None]*max_history_length
293
294
        self.last_x = x0
        self.last_gradient = gradient
Theo Steininger's avatar
Theo Steininger committed
295
        self.k = 0
296

Martin Reinecke's avatar
Martin Reinecke committed
297
        mmax = max_history_length
Martin Reinecke's avatar
Martin Reinecke committed
298
299
300
        self.ss = np.empty((mmax, mmax), dtype=np.float64)
        self.sy = np.empty((mmax, mmax), dtype=np.float64)
        self.yy = np.empty((mmax, mmax), dtype=np.float64)
301
302
303

    @property
    def history_length(self):
Martin Reinecke's avatar
Martin Reinecke committed
304
        """Returns the number of currently stored updates."""
305
306
307
308
        return min(self.k, self.max_history_length)

    @property
    def b(self):
309
310
        """Combines s, y and gradient to form the new base vectors b.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
311
312
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
313
        List
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
314
315
            List of new basis vectors.
        """
316
317
        result = []
        m = self.history_length
Martin Reinecke's avatar
Martin Reinecke committed
318
        mmax = self.max_history_length
319

Martin Reinecke's avatar
Martin Reinecke committed
320
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
321
            result.append(self.s[(self.k-m+i) % mmax])
322

Martin Reinecke's avatar
Martin Reinecke committed
323
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
324
            result.append(self.y[(self.k-m+i) % mmax])
325
326
327
328
329
330
331

        result.append(self.last_gradient)

        return result

    @property
    def b_dot_b(self):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
332
        """Generates the (2m+1) * (2m+1) scalar matrix.
333

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
334
        The i,j-th element of the matrix is a scalar product between the i-th
335
336
        and j-th base vector.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
337
338
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
339
        numpy.ndarray
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
340
341
            Scalar matrix.
        """
342
        m = self.history_length
Martin Reinecke's avatar
Martin Reinecke committed
343
        mmax = self.max_history_length
344
345
346
        k = self.k
        result = np.empty((2*m+1, 2*m+1), dtype=np.float)

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
347
        # update the stores
Martin Reinecke's avatar
Martin Reinecke committed
348
        k1 = (k-1) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
349
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
350
            kmi = (k-m+i) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
351
352
353
            self.ss[kmi, k1] = self.ss[k1, kmi] = self.s[kmi].vdot(self.s[k1])
            self.yy[kmi, k1] = self.yy[k1, kmi] = self.y[kmi].vdot(self.y[k1])
            self.sy[kmi, k1] = self.s[kmi].vdot(self.y[k1])
Martin Reinecke's avatar
Martin Reinecke committed
354
        for j in range(m-1):
Martin Reinecke's avatar
Martin Reinecke committed
355
356
            kmj = (k-m+j) % mmax
            self.sy[k1, kmj] = self.s[k1].vdot(self.y[kmj])
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
357

Martin Reinecke's avatar
Martin Reinecke committed
358
        for i in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
359
            kmi = (k-m+i) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
360
            for j in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
361
                kmj = (k-m+j) % mmax
Martin Reinecke's avatar
Martin Reinecke committed
362
363
364
                result[i, j] = self.ss[kmi, kmj]
                result[i, m+j] = result[m+j, i] = self.sy[kmi, kmj]
                result[m+i, m+j] = self.yy[kmi, kmj]
365

366
            sgrad_i = self.s[kmi].vdot(self.last_gradient)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
367
            result[2*m, i] = result[i, 2*m] = sgrad_i
368

Martin Reinecke's avatar
fix    
Martin Reinecke committed
369
            ygrad_i = self.y[kmi].vdot(self.last_gradient)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
370
            result[2*m, m+i] = result[m+i, 2*m] = ygrad_i
371

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
372
        result[2*m, 2*m] = self.last_gradient.norm()
373
        return result
Theo Steininger's avatar
Theo Steininger committed
374
375

    @property
376
    def delta(self):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
377
        """Calculates the new scalar coefficients (deltas).
378

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
379
380
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
381
        List
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
382
383
            List of the new scalar coefficients (deltas).
        """
384
385
386
387
388
389
390
391
        m = self.history_length
        b_dot_b = self.b_dot_b

        delta = np.zeros(2*m+1, dtype=np.float)
        delta[2*m] = -1

        alpha = np.empty(m, dtype=np.float)

Martin Reinecke's avatar
Martin Reinecke committed
392
393
        for j in range(m-1, -1, -1):
            delta_b_b = sum([delta[l] * b_dot_b[l, j] for l in range(2*m+1)])
394
395
396
            alpha[j] = delta_b_b/b_dot_b[j, m+j]
            delta[m+j] -= alpha[j]

Martin Reinecke's avatar
Martin Reinecke committed
397
        for i in range(2*m+1):
398
399
            delta[i] *= b_dot_b[m-1, 2*m-1]/b_dot_b[2*m-1, 2*m-1]

Martin Reinecke's avatar
Martin Reinecke committed
400
        for j in range(m):
Martin Reinecke's avatar
Martin Reinecke committed
401
            delta_b_b = sum([delta[l]*b_dot_b[m+j, l] for l in range(2*m+1)])
402
403
404
405
406
            beta = delta_b_b/b_dot_b[j, m+j]
            delta[j] += (alpha[j] - beta)

        return delta

Theo Steininger's avatar
Theo Steininger committed
407
    def add_new_point(self, x, gradient):
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
408
409
        """Updates the s list and y list.

Martin Reinecke's avatar
Martin Reinecke committed
410
411
        Calculates the new position and gradient differences and enters them
        into the respective list.
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
412
        """
Martin Reinecke's avatar
Martin Reinecke committed
413
414
415
        mmax = self.max_history_length
        self.s[self.k % mmax] = x - self.last_x
        self.y[self.k % mmax] = gradient - self.last_gradient
Theo Steininger's avatar
Theo Steininger committed
416

417
418
        self.last_x = x
        self.last_gradient = gradient
Theo Steininger's avatar
Theo Steininger committed
419

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
420
        self.k += 1