field.py 22.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import division, print_function
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
csongor's avatar
csongor committed
21
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
from .spaces.power_space import PowerSpace
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
25
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
26
from functools import reduce
27
from . import dobj
28

csongor's avatar
csongor committed
29

Martin Reinecke's avatar
Martin Reinecke committed
30
class Field(object):
Theo Steininger's avatar
Theo Steininger committed
31
32
33
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
34
    metainformation (i.e. the domain) for operators to be able to work on them.
Martin Reinecke's avatar
updates  
Martin Reinecke committed
35
    In addition, Field has methods to work with power spectra.
Theo Steininger's avatar
Theo Steininger committed
36

37
38
39
40
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
41
        LMSpace or PowerSpace. It might also be a FieldArray, which is
42
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
43

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
44
    val : scalar, numpy.ndarray, Field
45
46
47
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
48

49
    dtype : type
Martin Reinecke's avatar
updates  
Martin Reinecke committed
50
        A numpy.type. Most common are float and complex.
Theo Steininger's avatar
Theo Steininger committed
51

52
53
54
55
    copy: boolean

    Attributes
    ----------
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
56
    val : numpy.ndarray
Theo Steininger's avatar
Theo Steininger committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58
    domain : DomainTuple
59
60
61
        See Parameters.
    dtype : type
        Contains the datatype stored in the Field.
Theo Steininger's avatar
Theo Steininger committed
62

63
64
65
66
67
68
69
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
70

71
    """
72

Theo Steininger's avatar
Theo Steininger committed
73
    # ---Initialization methods---
74

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
75
    def __init__(self, domain=None, val=None, dtype=None, copy=False):
76
        self.domain = self._parse_domain(domain=domain, val=val)
77

Martin Reinecke's avatar
Martin Reinecke committed
78
        dtype = self._infer_dtype(dtype=dtype, val=val)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
79
        if isinstance(val, Field):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
80
            if self.domain != val.domain:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
81
                raise ValueError("Domain mismatch")
82
            self._val = dobj.from_object(val.val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
83
        elif (np.isscalar(val)):
84
85
            self._val = dobj.full(self.domain.shape, dtype=dtype, fill_value=val)
        elif isinstance(val, dobj.data_object):
Martin Reinecke's avatar
Martin Reinecke committed
86
            if self.domain.shape == val.shape:
87
                self._val = dobj.from_object(val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
88
89
90
            else:
                raise ValueError("Shape mismatch")
        elif val is None:
91
            self._val = dobj.empty(self.domain.shape, dtype=dtype)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
92
93
        else:
            raise TypeError("unknown source type")
csongor's avatar
csongor committed
94

Martin Reinecke's avatar
Martin Reinecke committed
95
96
    @staticmethod
    def _parse_domain(domain, val=None):
97
        if domain is None:
98
            if isinstance(val, Field):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
99
100
                return val.domain
            if np.isscalar(val):
101
                return DomainTuple.make(())  # empty domain tuple
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
102
            raise TypeError("could not infer domain from value")
Martin Reinecke's avatar
Martin Reinecke committed
103
        return DomainTuple.make(domain)
104

Martin Reinecke's avatar
Martin Reinecke committed
105
    # MR: this needs some rethinking ... do we need to have at least float64?
Martin Reinecke's avatar
Martin Reinecke committed
106
107
    @staticmethod
    def _infer_dtype(dtype, val):
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112
        if val is None or dtype is not None:
            return np.result_type(dtype, np.float64)
        if isinstance(val, Field):
            return val.dtype
        return np.result_type(val, np.float64)
113

114
    # ---Factory methods---
115

Martin Reinecke's avatar
Martin Reinecke committed
116
117
    @staticmethod
    def from_random(random_type, domain, dtype=np.float64, **kwargs):
118
119
120
121
122
123
124
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
125

126
127
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
128

129
130
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
131

132
133
134
135
136
137
138
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
139
        power_synthesize
140
        """
Theo Steininger's avatar
Theo Steininger committed
141

Martin Reinecke's avatar
Martin Reinecke committed
142
        domain = DomainTuple.make(domain)
143
        generator_function = getattr(Random, random_type)
144
        return Field(domain=domain, val=generator_function(dtype=dtype,
Martin Reinecke's avatar
Martin Reinecke committed
145
                     shape=domain.shape, **kwargs))
146

147
148
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
149
150
    def power_analyze(self, spaces=None, binbounds=None,
                      keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
151
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
152

Theo Steininger's avatar
Theo Steininger committed
153
154
155
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
156
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
157
        field, corresponding to the square root of the power spectrum.
158
159
160

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
161
        spaces : int *optional*
Martin Reinecke's avatar
Martin Reinecke committed
162
            The subspace for which the powerspectrum shall be computed.
Theo Steininger's avatar
Theo Steininger committed
163
164
165
            (default : None).
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
166
            if binbounds==None : bins are inferred.
167
168
169
170
171
172
173
174
175
176
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
177

178
179
        Raise
        -----
Martin Reinecke's avatar
Martin Reinecke committed
180
181
        TypeError
            Raised if any of the input field's domains is not harmonic
Theo Steininger's avatar
Theo Steininger committed
182

183
184
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
185
        out : Field
Martin Reinecke's avatar
typos  
Martin Reinecke committed
186
            The output object. Its domain is a PowerSpace and it contains
187
188
189
190
191
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
192

193
        """
Theo Steininger's avatar
Theo Steininger committed
194

Theo Steininger's avatar
Theo Steininger committed
195
        # check if all spaces in `self.domain` are either harmonic or
196
197
198
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
199
200
                print("WARNING: Field has a space in `domain` which is "
                      "neither harmonic nor a PowerSpace.")
201
202

        # check if the `spaces` input is valid
203
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
204
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
205
206
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
207
208

        if len(spaces) == 0:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
209
            raise ValueError("No space for analysis specified.")
210

211
        if keep_phase_information:
212
            parts = [self.real*self.real, self.imag*self.imag]
213
        else:
214
            parts = [self.real*self.real + self.imag*self.imag]
215

Martin Reinecke's avatar
Martin Reinecke committed
216
        parts = [ part.weight(1,spaces) for part in parts ]
217
        for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
218
219
            parts = [self._single_power_analyze(field=part,
                                                idx=space_index,
220
                                                binbounds=binbounds)
221
                     for part in parts]
Martin Reinecke's avatar
Martin Reinecke committed
222
        parts = [ part.weight(-1,spaces) for part in parts ]
223

224
        return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]
225

Martin Reinecke's avatar
Martin Reinecke committed
226
    @staticmethod
Martin Reinecke's avatar
Martin Reinecke committed
227
228
229
    def _single_power_analyze(field, idx, binbounds):
        power_domain = PowerSpace(field.domain[idx], binbounds)
        pindex = power_domain.pindex
Martin Reinecke's avatar
Martin Reinecke committed
230
        axes = field.domain.axes[idx]
Martin Reinecke's avatar
Martin Reinecke committed
231
232
233
234
        new_pindex_shape = [1] * len(field.shape)
        for i, ax in enumerate(axes):
            new_pindex_shape[ax] = pindex.shape[i]
        pindex = np.broadcast_to(pindex.reshape(new_pindex_shape), field.shape)
Theo Steininger's avatar
Theo Steininger committed
235

Martin Reinecke's avatar
Martin Reinecke committed
236
237
        power_spectrum = dobj.bincount_axis(pindex, weights=field.val,
                                            axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
238
239
240
        result_domain = list(field.domain)
        result_domain[idx] = power_domain
        return Field(result_domain, power_spectrum)
241

Martin Reinecke's avatar
Martin Reinecke committed
242
    def _compute_spec(self, spaces):
243
244
        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
245
246
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
247
248
249
250
251
252
253
254
255

        # create the result domain
        result_domain = list(self.domain)
        for i in spaces:
            if not isinstance(self.domain[i], PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
            result_domain[i] = self.domain[i].harmonic_partner

256
        spec = dobj.sqrt(self.val)
257
        for i in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
            power_space = self.domain[i]
            local_blow_up = [slice(None)]*len(spec.shape)
            # it is important to count from behind, since spec potentially
            # grows with every iteration
Martin Reinecke's avatar
Martin Reinecke committed
262
            index = self.domain.axes[i][0]-len(self.shape)
Martin Reinecke's avatar
Martin Reinecke committed
263
264
265
266
            local_blow_up[index] = power_space.pindex
            # here, the power_spectrum is distributed into the new shape
            spec = spec[local_blow_up]
        return Field(result_domain, val=spec)
267
268

    def power_synthesize(self, spaces=None, real_power=True, real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
269
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
270

Theo Steininger's avatar
Theo Steininger committed
271
        This method draws a Gaussian random field in the harmonic partner
Martin Reinecke's avatar
typos  
Martin Reinecke committed
272
        domain of this field's domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
273

274
275
276
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
277
278
279
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
280
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
281
282
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
283
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
284
285
            True will result in a purely real signal-space field
            (default : True).
Theo Steininger's avatar
Theo Steininger committed
286

287
288
289
290
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
291
            stored in the `spaces` in `self`.
292

Theo Steininger's avatar
Theo Steininger committed
293
294
295
296
297
298
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

299
300
301
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
302
303
304
305
306

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

307
        """
Theo Steininger's avatar
Theo Steininger committed
308

Martin Reinecke's avatar
Martin Reinecke committed
309
        spec = self._compute_spec(spaces)
310
311
312

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
313
        result = [self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
314
                                   domain=spec.domain,
315
316
317
318
319
320
321
                                   dtype=np.float if real_signal
                                   else np.complex)
                  for x in range(1 if real_power else 2)]

        # MR: dummy call - will be removed soon
        if real_signal:
            self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
322
                             domain=spec.domain, dtype=np.float)
323
324

        # apply the rescaler to the random fields
325
        result[0] *= spec.real
326
        if not real_power:
327
            result[1] *= spec.imag
328

329
        return result[0] if real_power else result[0] + 1j*result[1]
330

331
    def power_synthesize_special(self, spaces=None):
Martin Reinecke's avatar
Martin Reinecke committed
332
        spec = self._compute_spec(spaces)
333
334
335

        # MR: dummy call - will be removed soon
        self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
336
                         domain=spec.domain, dtype=np.complex)
337
338

        return spec.real
339

Theo Steininger's avatar
Theo Steininger committed
340
    # ---Properties---
341

Theo Steininger's avatar
Theo Steininger committed
342
343
    @property
    def val(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
344
        """ Returns the data object associated with this Field.
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
345
        No copy is made.
Theo Steininger's avatar
Theo Steininger committed
346

347
348
        Returns
        -------
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
349
        out : numpy.ndarray
350
        """
Martin Reinecke's avatar
Martin Reinecke committed
351
        return self._val
csongor's avatar
csongor committed
352

Martin Reinecke's avatar
Martin Reinecke committed
353
354
355
356
    @property
    def dtype(self):
        return self._val.dtype

357
358
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
359
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
360

361
362
363
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
364
            The output object. The tuple contains the dimensions of the spaces
365
            in domain.
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
366
       """
Martin Reinecke's avatar
Martin Reinecke committed
367
        return self.domain.shape
csongor's avatar
csongor committed
368

369
370
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
371
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
372

Theo Steininger's avatar
Theo Steininger committed
373
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
374

375
376
377
378
379
        Returns
        -------
        out : int
            The dimension of the Field.
        """
Martin Reinecke's avatar
Martin Reinecke committed
380
        return self.domain.dim
csongor's avatar
csongor committed
381

Theo Steininger's avatar
Theo Steininger committed
382
383
384
385
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
386
        return Field(self.domain, self.val.real)
Theo Steininger's avatar
Theo Steininger committed
387
388
389
390
391

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
392
        return Field(self.domain, self.val.imag)
Theo Steininger's avatar
Theo Steininger committed
393

Theo Steininger's avatar
Theo Steininger committed
394
    # ---Special unary/binary operations---
395

Martin Reinecke's avatar
Martin Reinecke committed
396
    def copy(self):
397
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
398

Martin Reinecke's avatar
Martin Reinecke committed
399
        The returned object will be an identical copy of the original Field.
Theo Steininger's avatar
Theo Steininger committed
400

401
402
403
404
405
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.
        """
Martin Reinecke's avatar
Martin Reinecke committed
406
        return Field(val=self, copy=True)
csongor's avatar
csongor committed
407

408
409
    def scalar_weight(self, spaces=None):
        if np.isscalar(spaces):
410
            return self.domain[spaces].scalar_dvol()
411
412
413

        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
414
        res = 1.
415
        for i in spaces:
416
            tmp = self.domain[i].scalar_dvol()
417
418
419
420
421
            if tmp is None:
                return None
            res *= tmp
        return res

422
    def weight(self, power=1, spaces=None, out=None):
Theo Steininger's avatar
Theo Steininger committed
423
        """ Weights the pixels of `self` with their invidual pixel-volume.
424
425
426
427

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
428
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
429

Theo Steininger's avatar
Theo Steininger committed
430
431
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
432

433
434
435
436
437
        out : Field or None
            if not None, the result is returned in a new Field
            otherwise the contents of "out" are overwritten with the result.
            "out" may be identical to "self"!

438
439
440
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
441
            The weighted field.
442
443

        """
444
445
446
447
448
        if out is None:
            out = self.copy()
        else:
            if out is not self:
                out.copy_content_from(self)
csongor's avatar
csongor committed
449

csongor's avatar
csongor committed
450
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
451
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
452
453
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
454

455
456
        fct = 1.
        for ind in spaces:
457
            wgt = self.domain[ind].dvol()
458
459
460
            if np.isscalar(wgt):
                fct *= wgt
            else:
461
                new_shape = dobj.ones(len(self.shape), dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
462
463
                new_shape[self.domain.axes[ind][0]:
                          self.domain.axes[ind][-1]+1] = wgt.shape
464
                wgt = wgt.reshape(new_shape)
465
                out *= wgt**power
466
        fct = fct**power
Martin Reinecke's avatar
Martin Reinecke committed
467
        if fct != 1.:
468
            out *= fct
469

470
        return out
csongor's avatar
csongor committed
471

Martin Reinecke's avatar
Martin Reinecke committed
472
    def vdot(self, x=None, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
473
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
474

475
476
477
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
478
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
479

Theo Steininger's avatar
Theo Steininger committed
480
        spaces : tuple of ints
481
482
            If the domain of `self` and `x` are not the same, `spaces` defines
            which domains of `x` are mapped to those of `self`.
Theo Steininger's avatar
Theo Steininger committed
483

484
485
486
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
487

488
        """
489
490
491
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
492

Martin Reinecke's avatar
Martin Reinecke committed
493
        # Compute the dot respecting the fact of discrete/continuous spaces
Martin Reinecke's avatar
Martin Reinecke committed
494
495
        tmp = self.scalar_weight(spaces)
        if tmp is None:
496
            fct = 1.
Martin Reinecke's avatar
Martin Reinecke committed
497
            y = self.weight(power=1)
498
        else:
Martin Reinecke's avatar
Martin Reinecke committed
499
500
            y = self
            fct = tmp
Theo Steininger's avatar
Theo Steininger committed
501

502
        if spaces is None:
503
            return fct*dobj.vdot(y.val.ravel(), x.val.ravel())
504
        else:
505
506
507
508
509
510
511
512
            spaces = utilities.cast_iseq_to_tuple(spaces)
            active_axes = []
            for i in spaces:
                active_axes += self.domain.axes[i]
            res = 0.
            for sl in utilities.get_slice_list(self.shape, active_axes):
                res += dobj.vdot(y.val, x.val[sl])
            return res*fct
Theo Steininger's avatar
Theo Steininger committed
513

Theo Steininger's avatar
Theo Steininger committed
514
    def norm(self):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
515
        """ Computes the L2-norm of the field values.
csongor's avatar
csongor committed
516

Theo Steininger's avatar
Theo Steininger committed
517
518
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
519
        norm : float
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
520
            The L2-norm of the field values.
csongor's avatar
csongor committed
521
522

        """
523
        return np.sqrt(np.abs(self.vdot(x=self)))
csongor's avatar
csongor committed
524

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
525
    def conjugate(self):
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
526
        """ Returns the complex conjugate of the field.
Theo Steininger's avatar
Theo Steininger committed
527

528
529
530
531
        Returns
        -------
        cc : field
            The complex conjugated field.
csongor's avatar
csongor committed
532
533

        """
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
534
        return Field(self.domain, self.val.conjugate(), self.dtype)
csongor's avatar
csongor committed
535

Theo Steininger's avatar
Theo Steininger committed
536
    # ---General unary/contraction methods---
537

Theo Steininger's avatar
Theo Steininger committed
538
539
    def __pos__(self):
        return self.copy()
540

Theo Steininger's avatar
Theo Steininger committed
541
    def __neg__(self):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
542
        return Field(self.domain, -self.val, self.dtype)
csongor's avatar
csongor committed
543

Theo Steininger's avatar
Theo Steininger committed
544
    def __abs__(self):
545
        return Field(self.domain, dobj.abs(self.val), self.dtype)
csongor's avatar
csongor committed
546

547
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
548
        if spaces is None:
549
            return getattr(self.val, op)()
Martin Reinecke's avatar
Martin Reinecke committed
550
551
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
552

Martin Reinecke's avatar
Martin Reinecke committed
553
        axes_list = tuple(self.domain.axes[sp_index] for sp_index in spaces)
554

Martin Reinecke's avatar
Martin Reinecke committed
555
        if len(axes_list) > 0:
Theo Steininger's avatar
Theo Steininger committed
556
            axes_list = reduce(lambda x, y: x+y, axes_list)
csongor's avatar
csongor committed
557

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
558
        # perform the contraction on the data
559
        data = getattr(self.val, op)(axis=axes_list)
csongor's avatar
csongor committed
560

Theo Steininger's avatar
Theo Steininger committed
561
562
563
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
564
        else:
Theo Steininger's avatar
Theo Steininger committed
565
            return_domain = tuple(self.domain[i]
Martin Reinecke's avatar
Martin Reinecke committed
566
                                  for i in range(len(self.domain))
Theo Steininger's avatar
Theo Steininger committed
567
                                  if i not in spaces)
568

Martin Reinecke's avatar
updates  
Martin Reinecke committed
569
            return Field(domain=return_domain, val=data, copy=False)
csongor's avatar
csongor committed
570

571
572
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
573

574
575
576
577
    def integrate(self, spaces=None):
        tmp = self.weight(1, spaces=spaces)
        return tmp.sum(spaces)

578
579
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
580

581
582
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
583

584
585
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
586

587
588
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
589

590
591
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
592

593
594
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
595

596
597
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
598

599
600
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
601

602
603
604
605
606
607
608
    def copy_content_from(self, other):
        if not isinstance(other, Field):
            raise TypeError("argument must be a Field")
        if other.domain != self.domain:
            raise ValueError("domains are incompatible.")
        self.val[()] = other.val

Theo Steininger's avatar
Theo Steininger committed
609
    # ---General binary methods---
csongor's avatar
csongor committed
610

611
    def _binary_helper(self, other, op):
csongor's avatar
csongor committed
612
        # if other is a field, make sure that the domains match
613
        if isinstance(other, Field):
614
615
            if other.domain != self.domain:
                raise ValueError("domains are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
616
617
            tval = getattr(self.val, op)(other.val)
            return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
618

Martin Reinecke's avatar
Martin Reinecke committed
619
620
        tval = getattr(self.val, op)(other)
        return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
621
622

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
623
        return self._binary_helper(other, op='__add__')
624

625
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
626
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
627
628

    def __iadd__(self, other):
629
        return self._binary_helper(other, op='__iadd__')
csongor's avatar
csongor committed
630
631

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
632
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
633
634

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
635
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
636
637

    def __isub__(self, other):
638
        return self._binary_helper(other, op='__isub__')
csongor's avatar
csongor committed
639
640

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
641
        return self._binary_helper(other, op='__mul__')
642

643
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
644
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
645
646

    def __imul__(self, other):
647
        return self._binary_helper(other, op='__imul__')
csongor's avatar
csongor committed
648
649

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
650
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
651

Martin Reinecke's avatar
Martin Reinecke committed
652
653
654
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

csongor's avatar
csongor committed
655
    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
656
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
657

Martin Reinecke's avatar
Martin Reinecke committed
658
659
660
    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

csongor's avatar
csongor committed
661
    def __idiv__(self, other):
662
        return self._binary_helper(other, op='__idiv__')
663

csongor's avatar
csongor committed
664
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
665
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
666
667

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
668
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
669
670

    def __ipow__(self, other):
671
        return self._binary_helper(other, op='__ipow__')
csongor's avatar
csongor committed
672
673

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
674
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
675
676

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
677
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
678
679
680
681
682

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
683
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
684
685
686
687
688

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
689
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
690
691

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
692
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
693
694

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
695
696
697
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
698
        return "<nifty2go.Field>"
Theo Steininger's avatar
Theo Steininger committed
699
700
701
702

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
Martin Reinecke's avatar
Martin Reinecke committed
703
        return "nifty2go.Field instance\n- domain      = " + \
Theo Steininger's avatar
Theo Steininger committed
704
               repr(self.domain) + \
705
               "\n- val         = " + repr(self.val) + \
Theo Steininger's avatar
Theo Steininger committed
706
707
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)