operator.py 8.86 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19
from ..utilities import NiftyMetaBase, indent
Martin Reinecke's avatar
Martin Reinecke committed
20 21 22 23 24 25 26


class Operator(NiftyMetaBase()):
    """Transforms values living on one domain into values living on another
    domain, and can also provide the Jacobian.
    """

Martin Reinecke's avatar
Martin Reinecke committed
27
    @property
Martin Reinecke's avatar
Martin Reinecke committed
28 29 30
    def domain(self):
        """DomainTuple or MultiDomain : the operator's input domain

Philipp Arras's avatar
Philipp Arras committed
31
            The domain on which the Operator's input Field is defined."""
Martin Reinecke's avatar
Martin Reinecke committed
32
        return self._domain
Martin Reinecke's avatar
Martin Reinecke committed
33

Martin Reinecke's avatar
Martin Reinecke committed
34
    @property
Martin Reinecke's avatar
Martin Reinecke committed
35 36 37
    def target(self):
        """DomainTuple or MultiDomain : the operator's output domain

Philipp Arras's avatar
Philipp Arras committed
38
            The domain on which the Operator's output Field is defined."""
Martin Reinecke's avatar
Martin Reinecke committed
39
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
40

Martin Reinecke's avatar
Martin Reinecke committed
41 42 43 44 45 46
    @staticmethod
    def _check_domain_equality(dom_op, dom_field):
        if dom_op != dom_field:
            s = "The operator's and field's domains don't match."
            from ..domain_tuple import DomainTuple
            from ..multi_domain import MultiDomain
Sebastian Hutschenreuter's avatar
fix  
Sebastian Hutschenreuter committed
47
            if not isinstance(dom_op, (DomainTuple, MultiDomain,)):
Martin Reinecke's avatar
Martin Reinecke committed
48 49 50 51
                s += " Your operator's domain is neither a `DomainTuple`" \
                     " nor a `MultiDomain`."
            raise ValueError(s)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
52 53 54 55 56 57 58 59 60 61
    def scale(self, factor):
        if factor == 1:
            return self
        from .scaling_operator import ScalingOperator
        return ScalingOperator(factor, self.target)(self)

    def conjugate(self):
        from .simple_linear_operators import ConjugationOperator
        return ConjugationOperator(self.target)(self)

Martin Reinecke's avatar
Martin Reinecke committed
62 63 64 65 66
    @property
    def real(self):
        from .simple_linear_operators import Realizer
        return Realizer(self.target)(self)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
67 68 69
    def __neg__(self):
        return self.scale(-1)

Martin Reinecke's avatar
Martin Reinecke committed
70 71 72
    def __matmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
73
        return _OpChain.make((self, x))
Martin Reinecke's avatar
Martin Reinecke committed
74

Martin Reinecke's avatar
Martin Reinecke committed
75
    def __mul__(self, x):
76 77 78 79 80
        if isinstance(x, Operator):
            return _OpProd(self, x)
        if np.isscalar(x):
            return self.scale(x)
        return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
81

82 83 84
    def __rmul__(self, x):
        return self.__mul__(x)

Philipp Arras's avatar
Philipp Arras committed
85 86 87
    def __add__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
88
        return _OpSum(self, x)
Philipp Arras's avatar
Philipp Arras committed
89

90 91 92 93 94
    def __sub__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
        return _OpSum(self, -x)

Martin Reinecke's avatar
Martin Reinecke committed
95 96 97 98 99
    def __pow__(self, power):
        if not np.isscalar(power):
            return NotImplemented
        return _OpChain.make((_PowerOp(self.target, power), self))

Martin Reinecke's avatar
Martin Reinecke committed
100 101 102
    def clip(self, min=None, max=None):
        if min is None and max is None:
            return self
Jakob Knollmueller's avatar
Jakob Knollmueller committed
103
        return _OpChain.make((_Clipper(self.target, min, max), self))
Martin Reinecke's avatar
Martin Reinecke committed
104

Martin Reinecke's avatar
Martin Reinecke committed
105 106
    def apply(self, x):
        raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
107

Philipp Arras's avatar
Philipp Arras committed
108
    def force(self, x):
Philipp Arras's avatar
Philipp Arras committed
109
        """Extract correct subset of domain of x and apply operator."""
Philipp Arras's avatar
Philipp Arras committed
110 111
        return self.apply(x.extract(self.domain))

112 113 114
    def _check_input(self, x):
        from ..linearization import Linearization
        d = x.target if isinstance(x, Linearization) else x.domain
Martin Reinecke's avatar
Martin Reinecke committed
115
        self._check_domain_equality(self._domain, d)
116

Martin Reinecke's avatar
Martin Reinecke committed
117
    def __call__(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
118 119 120
        if isinstance(x, Operator):
            return _OpChain.make((self, x))
        return self.apply(x)
Martin Reinecke's avatar
Martin Reinecke committed
121

Martin Reinecke's avatar
Martin Reinecke committed
122 123 124 125 126 127 128 129
    def ducktape(self, name):
        from .simple_linear_operators import ducktape
        return self(ducktape(self, None, name))

    def ducktape_left(self, name):
        from .simple_linear_operators import ducktape
        return ducktape(None, self, name)(self)

Martin Reinecke's avatar
Martin Reinecke committed
130 131 132
    def __repr__(self):
        return self.__class__.__name__

Martin Reinecke's avatar
Martin Reinecke committed
133

Martin Reinecke's avatar
Martin Reinecke committed
134
for f in ["sqrt", "exp", "log", "tanh", "sigmoid", 'sin', 'cos', 'tan',
135
          'sinh', 'cosh', 'absolute', 'sinc', 'one_over']:
Martin Reinecke's avatar
Martin Reinecke committed
136 137
    def func(f):
        def func2(self):
138
            fa = _FunctionApplier(self.target, f)
Martin Reinecke's avatar
Martin Reinecke committed
139 140 141 142 143 144 145 146
            return _OpChain.make((fa, self))
        return func2
    setattr(Operator, f, func(f))


class _FunctionApplier(Operator):
    def __init__(self, domain, funcname):
        from ..sugar import makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
147
        self._domain = self._target = makeDomain(domain)
Martin Reinecke's avatar
Martin Reinecke committed
148 149
        self._funcname = funcname

Martin Reinecke's avatar
Martin Reinecke committed
150
    def apply(self, x):
151
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
152 153 154
        return getattr(x, self._funcname)()


Martin Reinecke's avatar
Martin Reinecke committed
155 156 157 158 159 160 161 162 163 164 165 166
class _Clipper(Operator):
    def __init__(self, domain, min=None, max=None):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._min = min
        self._max = max

    def apply(self, x):
        self._check_input(x)
        return x.clip(self._min, self._max)


Martin Reinecke's avatar
Martin Reinecke committed
167 168 169 170 171 172 173 174 175 176 177
class _PowerOp(Operator):
    def __init__(self, domain, power):
        from ..sugar import makeDomain
        self._domain = self._target = makeDomain(domain)
        self._power = power

    def apply(self, x):
        self._check_input(x)
        return x**self._power


Martin Reinecke's avatar
Martin Reinecke committed
178 179 180 181 182 183 184 185 186 187
class _CombinedOperator(Operator):
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
        self._ops = tuple(ops)

    @classmethod
    def unpack(cls, ops, res):
        for op in ops:
            if isinstance(op, cls):
Martin Reinecke's avatar
Martin Reinecke committed
188
                res = cls.unpack(op._ops, res)
Martin Reinecke's avatar
Martin Reinecke committed
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            else:
                res = res + [op]
        return res

    @classmethod
    def make(cls, ops):
        res = cls.unpack(ops, [])
        if len(res) == 1:
            return res[0]
        return cls(res, _callingfrommake=True)


class _OpChain(_CombinedOperator):
    def __init__(self, ops, _callingfrommake=False):
        super(_OpChain, self).__init__(ops, _callingfrommake)
Martin Reinecke's avatar
Martin Reinecke committed
204 205
        self._domain = self._ops[-1].domain
        self._target = self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
206 207 208
        for i in range(1, len(self._ops)):
            if self._ops[i-1].domain != self._ops[i].target:
                raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
209

Martin Reinecke's avatar
Martin Reinecke committed
210
    def apply(self, x):
211
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
212 213 214 215
        for op in reversed(self._ops):
            x = op(x)
        return x

Philipp Arras's avatar
Philipp Arras committed
216 217 218 219 220
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in self._ops)
        return "_OpChain:\n" + indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
221 222 223 224 225 226 227 228 229
class _OpProd(Operator):
    def __init__(self, op1, op2):
        from ..sugar import domain_union
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = op1.target
        if op1.target != op2.target:
            raise ValueError("target mismatch")
        self._op1 = op1
        self._op2 = op2
Martin Reinecke's avatar
Martin Reinecke committed
230

Martin Reinecke's avatar
Martin Reinecke committed
231
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
232 233
        from ..linearization import Linearization
        from ..sugar import makeOp
234
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
235
        lin = isinstance(x, Linearization)
236 237 238
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Martin Reinecke's avatar
Martin Reinecke committed
239
        if not lin:
240
            return self._op1(v1) * self._op2(v2)
241 242 243
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
244 245
        op = (makeOp(lin1._val)(lin2._jac))._myadd(
            makeOp(lin2._val)(lin1._jac), False)
246
        return lin1.new(lin1._val*lin2._val, op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
247

Philipp Arras's avatar
Philipp Arras committed
248 249 250 251 252
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpProd:\n"+indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
253 254
class _OpSum(Operator):
    def __init__(self, op1, op2):
Philipp Arras's avatar
Philipp Arras committed
255
        from ..sugar import domain_union
Martin Reinecke's avatar
Martin Reinecke committed
256 257 258 259
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = domain_union((op1.target, op2.target))
        self._op1 = op1
        self._op2 = op2
Philipp Arras's avatar
Philipp Arras committed
260 261

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
262
        from ..linearization import Linearization
263
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
264 265 266 267
        lin = isinstance(x, Linearization)
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Philipp Arras's avatar
Philipp Arras committed
268
        res = None
Martin Reinecke's avatar
Martin Reinecke committed
269 270
        if not lin:
            return self._op1(v1).unite(self._op2(v2))
271 272 273
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
274
        op = lin1._jac._myadd(lin2._jac, False)
Martin Reinecke's avatar
bug fix  
Martin Reinecke committed
275
        res = lin1.new(lin1._val.unite(lin2._val), op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
276 277
        if lin1._metric is not None and lin2._metric is not None:
            res = res.add_metric(lin1._metric + lin2._metric)
Philipp Arras's avatar
Philipp Arras committed
278
        return res
Philipp Arras's avatar
Philipp Arras committed
279 280 281 282

    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpSum:\n"+indent(subs)