sugar.py 3.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20
21

from nifty import PowerSpace,\
                  Field,\
                  DiagonalOperator,\
22
23
24
25
                  sqrt,\
                  nifty_configuration

__all__ = ['create_power_operator', 'generate_posterior_sample']
26
27


Jakob Knollmueller's avatar
Jakob Knollmueller committed
28
def create_power_operator(domain, power_spectrum, dtype=None,
29
                          distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
30
    """ Creates a diagonal operator with the given power spectrum.
31

32
    Constructs a diagonal operator that lives over the specified domain.
33

34
35
36
    Parameters
    ----------
    domain : DomainObject
37
        Domain over which the power operator shall live.
Theo Steininger's avatar
Theo Steininger committed
38
    power_spectrum : (array-like, method)
39
40
        An array-like object, or a method that implements the square root
        of a power spectrum as a function of k.
Theo Steininger's avatar
Theo Steininger committed
41
    dtype : type *optional*
42
        dtype that the field holding the power spectrum shall use
Theo Steininger's avatar
Theo Steininger committed
43
44
45
        (default : None).
        if dtype == None: the dtype of `power_spectrum` will be used.
    distribution_strategy : string *optional*
46
        Distributed strategy to be used by the underlying d2o objects.
Theo Steininger's avatar
Theo Steininger committed
47
48
        (default : 'not')

49
50
    Returns
    -------
Theo Steininger's avatar
Theo Steininger committed
51
    DiagonalOperator : An operator that implements the given power spectrum.
52

53
    """
54

55
56
57
58
    if distribution_strategy is None:
        distribution_strategy = \
            nifty_configuration['default_distribution_strategy']

Jakob Knollmueller's avatar
Jakob Knollmueller committed
59
60
    if isinstance(power_spectrum, Field):
        power_domain = power_spectrum.domain
61
    else:
Jakob Knollmueller's avatar
Jakob Knollmueller committed
62
        power_domain = PowerSpace(domain,
63
                                  distribution_strategy=distribution_strategy)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
64

65
    fp = Field(power_domain, val=power_spectrum, dtype=dtype,
66
67
68
               distribution_strategy='not')
    f = fp.power_synthesize(mean=1, std=0, real_signal=False,
                            distribution_strategy=distribution_strategy)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
69
    f **= 2
70
    return DiagonalOperator(domain, diagonal=f, bare=True)
71

72

73
74
75
def generate_posterior_sample(mean, covariance):
    """ Generates a posterior sample from a Gaussian distribution with given
    mean and covariance
76

77
78
79
    This method generates samples by setting up the observation and
    reconstruction of a mock signal in order to obtain residuals of the right
    correlation which are added to the given mean.
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    Parameters
    ----------
    mean : Field
        the mean of the posterior Gaussian distribution
    covariance : WienerFilterCurvature
        The posterior correlation structure consisting of a
        response operator, noise covariance and prior signal covariance

    Returns
    -------
    sample : Field
        Returns the a sample from the Gaussian of given mean and covariance.

    """

96
97
98
    S = covariance.S
    R = covariance.R
    N = covariance.N
99

Jakob Knollmueller's avatar
Jakob Knollmueller committed
100
    power = S.diagonal().power_analyze()**.5
101
102
    mock_signal = power.power_synthesize(real_signal=True)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
103
    noise = N.diagonal(bare=True).val
104

105
    mock_noise = Field.from_random(random_type="normal", domain=N.domain,
106
                                   std=sqrt(noise), dtype=noise.dtype)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
107
    mock_data = R(mock_signal) + mock_noise
108

Jakob Knollmueller's avatar
Jakob Knollmueller committed
109
    mock_j = R.adjoint_times(N.inverse_times(mock_data))
110
111
112
    mock_m = covariance.inverse_times(mock_j)
    sample = mock_signal - mock_m + mean
    return sample