distributed_do.py 18.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20
21
22

import sys

23
24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25
26
27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
Martin Reinecke's avatar
Martin Reinecke committed
35
           "redistribute", "default_distaxis", "is_numpy", "absmax", "norm",
Martin Reinecke's avatar
Martin Reinecke committed
36
           "lock", "locked", "uniform_full", "transpose", "to_global_data_rw",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
37
38
           "ensure_not_distributed", "ensure_default_distributed",
           "clipped_exp"]
Martin Reinecke's avatar
Martin Reinecke committed
39

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
40
41
42
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
43
master = (rank == 0)
44
45


Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
49
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
50
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
51
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
52

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
53
54

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
55
56
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
57
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
58
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
59
60
    return lo, hi

61

62
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
63
    if len(shape) == 0 or distaxis == -1:
64
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
65
66
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
67
68
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
69

70
71
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
72
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
73
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
74
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
75
76
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
77
78
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
79
80
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
81

82
83
84
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
126
        return data_object(self._shape, self._data.real, self._distaxis)
127
128
129

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
130
        return data_object(self._shape, self._data.imag, self._distaxis)
131

Martin Reinecke's avatar
Martin Reinecke committed
132
133
134
135
136
137
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
138
    def _contraction_helper(self, op, mpiop, axis):
139
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
140
            if len(axis) == len(self._data.shape):
141
142
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
143
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
144
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
145
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
146
147
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
148
            return res2[()]
149
150

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
151
152
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
153
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
154
            return from_global_data(res2, distaxis=0)
155
        else:
Martin Reinecke's avatar
Martin Reinecke committed
156
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
157
158
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
159
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
160
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
161
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
162
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
163
164
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
165
166
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
167
168
169

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
170

171
172
173
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

174
175
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
176

177
178
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
179

180
181
182
183
184
185
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
186

187
188
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
189

Martin Reinecke's avatar
Martin Reinecke committed
190
    # FIXME: to be improved!
191
192
193
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
194
195
        return (abs(self-self.mean())**2).mean()

196
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
197
        a = self
198
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
199
            b = other
200
201
202
203
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
204
205
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
206
207
208
209
210
        elif np.isscalar(other):
            a = a._data
            b = other
        else:
            return NotImplemented
211
212

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
213
214
215
216
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
217
218

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
219
        return data_object(self._shape, -self._data, self._distaxis)
220
221

    def __abs__(self):
222
        return data_object(self._shape, abs(self._data), self._distaxis)
223
224

    def all(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
225
        return self.sum() == self.size
226
227

    def any(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
228
        return self.sum() != 0
229

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
230
231
    def fill(self, value):
        self._data.fill(value)
232

233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
248

Martin Reinecke's avatar
Martin Reinecke committed
249
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
250
251
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
252
253


Martin Reinecke's avatar
Martin Reinecke committed
254
255
256
257
258
259
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
260
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
261
262
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
263
264


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
265
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
266
267
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
268
269


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
270
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
271
272
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
273
274
275
276
277
278
279


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
280
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
281
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
282
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
283
284
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
285
    return res[()]
286
287
288


def _math_helper(x, function, out):
289
    function = getattr(np, function)
290
291
292
293
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
294
        return data_object(x.shape, function(x._data), x._distaxis)
295
296


297
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
298

299
for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
300
301
302
303
304
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
305
306


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
307
def clipped_exp(a):
Martin Reinecke's avatar
fix  
Martin Reinecke committed
308
    return data_object(x.shape, np.exp(np.clip(x.data, -300, 300), x.distaxis))
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
309
310


Martin Reinecke's avatar
Martin Reinecke committed
311
312
313
314
315
316
317
318
319
320
321
322
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix  
Martin Reinecke committed
323
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
324
    return data_object(object._shape, data, distaxis=object._distaxis)
325
326


Martin Reinecke's avatar
Martin Reinecke committed
327
328
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
329
330
331
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
332
def from_random(random_type, shape, dtype=np.float64, **kwargs):
333
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
334
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
335
336
337
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
338
339
340
341
342
343
344
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
345

Martin Reinecke's avatar
Martin Reinecke committed
346

Martin Reinecke's avatar
Martin Reinecke committed
347
348
349
350
def local_data(arr):
    return arr._data


351
352
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
353
    if distaxis < 0:
354
355
356
357
358
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
359
360
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
361
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
362
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
363
364


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
365
366
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
367
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
368
    return res
Martin Reinecke's avatar
Martin Reinecke committed
369
370


371
372
373
374
375
376
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
377
378
379
380
381
382
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
383
384
385
386
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
387
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
388
389
390
    return data_object(shape, arr, distaxis)


391
392
393
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
394
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
395
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
396
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
397
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
398
    sl[distaxis] = slice(lo, hi)
399
    return data_object(arr.shape, arr[tuple(sl)], distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
400
401


Martin Reinecke's avatar
Martin Reinecke committed
402
403
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
404
405
406
407
408
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


409
410
411
412
413
414
415
def to_global_data_rw(arr):
    if arr._distaxis == -1:
        return arr._data.copy()
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
416
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
417
418
419
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
420
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
421
422
423
424
425
426
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
427
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
428
429
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
430
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
431
                break
Martin Reinecke's avatar
Martin Reinecke committed
432

Martin Reinecke's avatar
Martin Reinecke committed
433
    if arr._distaxis == -1:  # all data available, just pick the proper subset
434
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
435
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
436
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
437
438
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
439
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
440
441
442
443
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
444
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
445
446
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
447
448
449
450
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
451
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
452
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
453

Martin Reinecke's avatar
Martin Reinecke committed
454
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
455
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
456
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
457
458
459
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
460
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
461
462
463
464
465
466
467
468
469
470
471
472
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
473
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
474
            ssz[i] = ssz0*(hi-lo)
475
            sbuf[ofs:ofs+ssz[i]] = arr._data[tuple(sslice)].flat
Martin Reinecke's avatar
Martin Reinecke committed
476
477
478
479
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
480
481
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
482
483
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
484
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
485
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
486
487
488
489
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
490
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
491
492
493
494
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
495
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
496
            sz = rsz[i]//arr._data.itemsize
497
            arrnew[tuple(rslice)].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
498
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
499
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
500
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
501
502


Martin Reinecke's avatar
Martin Reinecke committed
503
504
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
505
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
506
507
508
509
510
511
512
513
514
515
516
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
517
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
518
519
520
521
522
523
524
525
526
527
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
528
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
529
530
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
531
532
533
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
534
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
535
        ofs += sz
536
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
537
538


Martin Reinecke's avatar
Martin Reinecke committed
539
540
def default_distaxis():
    return 0
541
542
543
544
545
546
547
548


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
549
550
551
552
553
554
555
556
557
558
559
560


def ensure_not_distributed(arr, axes):
    if arr._distaxis in axes:
        arr = redistribute(arr, nodist=axes)
    return arr, arr._data


def ensure_default_distributed(arr):
    if arr._distaxis != 0:
        arr = redistribute(arr, dist=0)
    return arr
Martin Reinecke's avatar
Martin Reinecke committed
561
562
563
564
565
566


def absmax(arr):
    if arr._data.size == 0:
        tmp = np.array(0, dtype=arr._data.dtype)
    else:
567
        tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=np.inf))
Martin Reinecke's avatar
Martin Reinecke committed
568
569
570
571
572
573
574
575
    res = np.empty_like(tmp)
    _comm.Allreduce(tmp, res, MPI.MAX)
    return res[()]


def norm(arr, ord=2):
    if ord == np.inf:
        return absmax(arr)
576
    tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=ord) ** ord)
Martin Reinecke's avatar
Martin Reinecke committed
577
    res = np.empty_like(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
578
579
580
581
    if len(arr._data.shape) == 0:
        res = tmp
    else:
        _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
Martin Reinecke committed
582
    return res[()] ** (1./ord)