nifty_lm.py 78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division
35

Marco Selig's avatar
Marco Selig committed
36
37
38
39
40
import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
41
42
43
44

from nifty.nifty_core import space,\
                             point_space,\
                             field
45
from nifty.keepers import about,\
46
47
                    global_configuration as gc,\
                    global_dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
48
from nifty.nifty_paradict import lm_space_paradict,\
49
50
51
52
                                 gl_space_paradict,\
                                 hp_space_paradict
from nifty.nifty_power_indices import lm_power_indices

Ultimanet's avatar
Ultimanet committed
53
from nifty.nifty_random import random
54

Ultima's avatar
Ultima committed
55
56
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')
57
58

LM_DISTRIBUTION_STRATEGIES = []
Ultima's avatar
Ultima committed
59
60
GL_DISTRIBUTION_STRATEGIES = []
HP_DISTRIBUTION_STRATEGIES = []
Marco Selig's avatar
Marco Selig committed
61
62


63
class lm_space(point_space):
Marco Selig's avatar
Marco Selig committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
83
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
113
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
114
115
116
117
118
119
120
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """
121
122

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128'),
123
                 datamodel='np', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
124
125
126
127
128
129
130
131
132
133
134
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
135
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """
151

152
        # check imports
Ultima's avatar
Ultima committed
153
        if not gc['use_libsharp'] and not gc['use_healpy']:
154
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
155
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))
156

Ultima's avatar
Ultima committed
157
158
159

        self._cache_dict = {'check_codomain': {}}

160
        self.paradict = lm_space_paradict(lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
161

162
163
164
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
Marco Selig's avatar
Marco Selig committed
165
            about.warnings.cprint("WARNING: data type set to default.")
166
167
            dtype = np.dtype('complex128')
        self.dtype = dtype
168

169
        # set datamodel
170
171
172
173
        if datamodel not in ['np']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'np'
        else:
174
175
            self.datamodel = datamodel

Marco Selig's avatar
Marco Selig committed
176
        self.discrete = True
177
        self.harmonic = True
178
        self.distances = (np.float(1),)
179
        self.comm = self._parse_comm(comm)
180
181
182
183
184
185
186

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.get_dim(),
                    comm=self.comm,
                    datamodel=self.datamodel,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)
Marco Selig's avatar
Marco Selig committed
187

188
189
    @property
    def para(self):
190
        temp = np.array([self.paradict['lmax'],
191
192
                         self.paradict['mmax']], dtype=int)
        return temp
193

194
195
196
197
198
    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

Ultima's avatar
Ultima committed
199
200
201
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
202
            if key in ['_cache_dict', 'power_indices']:
Ultima's avatar
Ultima committed
203
204
205
206
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

Ultima's avatar
Ultima committed
207
208
209
210
211
212
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
213
                if ii[0] not in ['_cache_dict', 'power_indices', 'comm']]
Ultima's avatar
Ultima committed
214
215
216
217
        temp.append(('comm', self.comm.__hash__()))
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

218
    def copy(self):
219
220
221
222
        return lm_space(lmax=self.paradict['lmax'],
                        mmax=self.paradict['mmax'],
                        dtype=self.dtype)

223
    def get_shape(self):
Ultima's avatar
Ultima committed
224
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
225
226
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)
227
228

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        """
            Computes the number of degrees of freedom of the space, taking into
            account symmetry constraints and complex-valuedness.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            The number of degrees of freedom is reduced due to the hermitian
            symmetry, which is assumed for the spherical harmonics components.
        """
243
244
        # dof = 2*dim-(lmax+1) = (lmax+1)*(2*mmax+1)*(mmax+1)*mmax
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
245
        mmax = self.paradict['mmax']
246
247
248
249
250
        dof = np.int((lmax + 1) * (2 * mmax + 1) - (mmax + 1) * mmax)
        if split:
            return (dof, )
        else:
            return dof
Marco Selig's avatar
Marco Selig committed
251

252
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
253
        """
254
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
255

256
257
258
259
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
260
261
262

            Parameters
            ----------
263
264
265
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
266
267
268

            Returns
            -------
269
270
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
Marco Selig's avatar
Marco Selig committed
271

272
273
274
275
276
            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
Marco Selig's avatar
Marco Selig committed
277
        """
278
279
280
281
282
283
        if not split:
            return np.float(self.get_dof())
        else:
            mol = self.cast(1, dtype=np.float)
            mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
            return mol
Marco Selig's avatar
Marco Selig committed
284

285
286
287
288
289
290
291
292
293
    def _cast_to_d2o(self, x, dtype=None, hermitianize=True, **kwargs):
        raise NotImplementedError

    def _cast_to_np(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(lm_space, self)._cast_to_np(x=x,
                                                     dtype=dtype,
                                                     **kwargs)
        complexity_mask = np.iscomplex(casted_x[:self.paradict['lmax']+1])
        if np.any(complexity_mask):
Ultima's avatar
Ultima committed
294
            about.warnings.cprint("WARNING: Taking the absolute values for " +
295
296
297
298
                                  "all complex entries where lmax==0")
            casted_x[complexity_mask] = np.abs(casted_x[complexity_mask])
        return casted_x

299
    # TODO: Extend to binning/log
300
301
302
303
304
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
305
306
307
308
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

Ultima's avatar
Ultima committed
309
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
329
330
        if codomain is None:
            return False
331

332
333
334
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))
Marco Selig's avatar
Marco Selig committed
335

336
337
338
        if self.comm is not codomain.comm:
            return False

339
340
341
        if self.datamodel is not codomain.datamodel:
            return False

342
343
344
        elif isinstance(codomain, gl_space):
            # lmax==mmax
            # nlat==lmax+1
345
            # nlon==2*lmax+1
346
347
348
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
Marco Selig's avatar
Marco Selig committed
349
350
                return True

351
352
353
354
355
        elif isinstance(codomain, hp_space):
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
Marco Selig's avatar
Marco Selig committed
356
357
358
359
                return True

        return False

360
    def get_codomain(self, coname=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
386
387
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
Marco Selig's avatar
Marco Selig committed
388
389
390
391
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
392
393
394
395
396
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
Marco Selig's avatar
Marco Selig committed
397
            else:
398
399
400
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
401
402
403
404
            return gl_space(nlat=nlat, nlon=nlon, dtype=new_dtype,
                            datamodel=self.datamodel,
                            comm=self.comm)

405
406
        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
407
408
409
410
            return hp_space(nside=nside,
                            datamodel=self.datamodel,
                            comm=self.comm)

Marco Selig's avatar
Marco Selig committed
411
        else:
412
            raise ValueError(about._errors.cstring(
413
414
415
416
417
418
419
420
421
422
423
424
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.
Marco Selig's avatar
Marco Selig committed
425

426
427
428
429
430
431
            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
432

433
434
435
436
437
438
                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)
Marco Selig's avatar
Marco Selig committed
439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
            return np.zeros(self.get_shape(), dtype=self.dtype)

Ultima's avatar
Ultima committed
459
        elif arg['random'] == "pm1":
460
461
462
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
            return self.cast(x)

Ultima's avatar
Ultima committed
463
        elif arg['random'] == "gau":
464
465
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
466
467
                           mean=arg['mean'],
                           std=arg['std'])
468
469
            return self.cast(x)

Ultima's avatar
Ultima committed
470
        elif arg['random'] == "syn":
471
472
473
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
474
475
                if gc['use_libsharp']:
                    x = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
476
                else:
Ultima's avatar
Ultima committed
477
                    x = hp.synalm(arg['spec'].astype(np.complex128),
478
479
                                  lmax=lmax, mmax=mmax).astype(np.complex64)
            else:
Ultima's avatar
Ultima committed
480
481
                if gc['use_healpy']:
                    x = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
482
                else:
Ultima's avatar
Ultima committed
483
                    x = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)
484
485
            return x

Ultima's avatar
Ultima committed
486
        elif arg['random'] == "uni":
487
488
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
489
490
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
491
492
493
494
            return self.cast(x)

        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
495
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
496

497
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
514
515
516
        x = self.cast(x)
        y = self.cast(y)

Ultima's avatar
Ultima committed
517
        if gc['use_libsharp']:
518
519
520
521
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
                return gl.dotlm_f(x, y, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
522
            else:
523
                return gl.dotlm(x, y, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
524
        else:
525
            return self._dotlm(x, y)
Ultima's avatar
Ultima committed
526

527
528
529
530
531
532
533
    def _dotlm(self, x, y):
        lmax = self.paradict['lmax']
        dot = np.sum(x.real[:lmax + 1] * y.real[:lmax + 1])
        dot += 2 * np.sum(x.real[lmax + 1:] * y.real[lmax + 1:])
        dot += 2 * np.sum(x.imag[lmax + 1:] * y.imag[lmax + 1:])
        return dot

534
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
535
536
537
538
539
540
541
542
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
543
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
544
545
546
547
548
549
550
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
551
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
552

553
554
        if codomain is None:
            codomain = self.get_codomain()
Marco Selig's avatar
Marco Selig committed
555

556
557
558
559
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
560

561
562
563
564
565
        if isinstance(codomain, gl_space):
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
Marco Selig's avatar
Marco Selig committed
566

567
            # transform
568
569
570
            if self.dtype == np.dtype('complex64'):
                Tx = gl.alm2map_f(x, nlat=nlat, nlon=nlon,
                                  lmax=lmax, mmax=mmax, cl=False)
Marco Selig's avatar
Marco Selig committed
571
            else:
572
573
574
575
                Tx = gl.alm2map(x, nlat=nlat, nlon=nlon,
                                lmax=lmax, mmax=mmax, cl=False)
            # re-weight if discrete
            if codomain.discrete:
576
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
577

578
579
580
581
582
        elif isinstance(codomain, hp_space):
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

583
            # transform
584
585
            Tx = hp.alm2map(x.astype(np.complex128), nside, lmax=lmax,
                            mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
586
                            pol=True, inplace=False)
587
            # re-weight if discrete
Marco Selig's avatar
Marco Selig committed
588
            if(codomain.discrete):
589
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
590
591

        else:
592
593
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))
Marco Selig's avatar
Marco Selig committed
594

595
        return Tx.astype(codomain.dtype)
Marco Selig's avatar
Marco Selig committed
596

597
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
616
        x = self.cast(x)
617
        # check sigma
618
        if sigma == 0:
Ultima's avatar
Ultima committed
619
            return self.unary_operation(x, op='copy')
620
        elif sigma == -1:
Marco Selig's avatar
Marco Selig committed
621
            about.infos.cprint("INFO: invalid sigma reset.")
622
623
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
Marco Selig's avatar
Marco Selig committed
624
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultima's avatar
Ultima committed
625
        if gc['use_healpy']:
626
            return hp.smoothalm(x, fwhm=0.0, sigma=sigma,
627
628
                                pol=True, mmax=self.paradict['mmax'],
                                verbose=False, inplace=False)
Marco Selig's avatar
Marco Selig committed
629
        else:
630
631
632
            return gl.smoothalm(x, lmax=self.paradict['lmax'],
                                mmax=self.paradict['mmax'],
                                fwhm=0.0, sigma=sigma, overwrite=False)
Marco Selig's avatar
Marco Selig committed
633

634
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
649
650
651
652
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

653
        # power spectrum
654
        if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
655
            if gc['use_libsharp']:
656
                return gl.anaalm_f(x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
657
            else:
658
659
660
                return hp.alm2cl(x.astype(np.complex128), alms2=None,
                                 lmax=lmax, mmax=mmax, lmax_out=lmax,
                                 nspec=None).astype(np.float32)
Marco Selig's avatar
Marco Selig committed
661
        else:
Ultima's avatar
Ultima committed
662
            if gc['use_healpy']:
663
664
                return hp.alm2cl(x, alms2=None, lmax=lmax, mmax=mmax,
                                 lmax_out=lmax, nspec=None)
Marco Selig's avatar
Marco Selig committed
665
            else:
666
                return gl.anaalm(x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
667

668
669
670
    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
Marco Selig's avatar
Marco Selig committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
715
        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
Marco Selig's avatar
Marco Selig committed
716
717
718
719
720
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

721
722
723
            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
Marco Selig's avatar
Marco Selig committed
724

725
            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
Marco Selig's avatar
Marco Selig committed
726
            if(vmin is None):
727
728
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
729
            if(vmax is None):
730
731
732
733
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
Marco Selig's avatar
Marco Selig committed
734
            if(mono):
735
736
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)
Marco Selig's avatar
Marco Selig committed
737
738

            if(other is not None):
739
                if(isinstance(other, tuple)):
Marco Selig's avatar
Marco Selig committed
740
741
                    other = list(other)
                    for ii in xrange(len(other)):
742
                        if(isinstance(other[ii], field)):
Marco Selig's avatar
Marco Selig committed
743
744
745
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
746
                elif(isinstance(other, field)):
Marco Selig's avatar
Marco Selig committed
747
748
749
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
750
                imax = max(1, len(other) - 1)
Marco Selig's avatar
Marco Selig committed
751
                for ii in xrange(len(other)):
752
753
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
754
                    if(mono):
755
756
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
757
758
759
                if(legend):
                    ax0.legend()

760
            ax0.set_xlim(xaxes[1], xaxes[-1])
Marco Selig's avatar
Marco Selig committed
761
            ax0.set_xlabel(r"$\ell$")
762
            ax0.set_ylim(vmin, vmax)
Marco Selig's avatar
Marco Selig committed
763
764
765
766
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
Ultima's avatar
Ultima committed
767
            x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
768
769
770
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
771
772
773
774
775
776
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
Marco Selig's avatar
Marco Selig committed
777
778
779
780
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
781
782
783
784
785
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
Marco Selig's avatar
Marco Selig committed
786
787
            else:
                if(vmin is None):
788
                    vmin = np.min(x, axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
789
                if(vmax is None):
790
791
792
793
794
795
796
797
798
799
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
Marco Selig's avatar
Marco Selig committed
800
                lm = 0
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
Marco Selig's avatar
Marco Selig committed
817
818
                else:
                    n_ = None
819
820
821
822
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
823
                ax0.set_xlabel(r"$\ell$")
824
825
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
826
827
828
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
829
830
831
832
833
834
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
Marco Selig's avatar
Marco Selig committed
835
836
837
838
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
839
840
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
Marco Selig's avatar
Marco Selig committed
841
842
                ax0.set_title(title)

843
844
845
        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
Marco Selig's avatar
Marco Selig committed
846
847
848
849
            pl.close(fig)
        else:
            fig.canvas.draw()

850
851
852
853
854
855
856
857
    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.get_dim())
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m
Marco Selig's avatar
Marco Selig committed
858
859


860
class gl_space(point_space):
Marco Selig's avatar
Marco Selig committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
878
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
879
880
881
882
883
884
885
886
887
888
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
889
        `dtype` has to be either numpy.float64 or numpy.float32.
Marco Selig's avatar
Marco Selig committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
904
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
905
906
907
908
909
910
911
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """
912

Ultima's avatar
Ultima committed
913
    def __init__(self, nlat, nlon=None, dtype=np.dtype('float64'),
914
                 datamodel='np', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
915
916
917
918
919
920
921
922
923
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
924
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
939
        # check imports
Ultima's avatar
Ultima committed
940
        if not gc['use_libsharp']:
941
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
942
                "ERROR: libsharp_wrapper_gl not loaded."))
943

Ultima's avatar
Ultima committed
944
        self._cache_dict = {'check_codomain': {}}
945
        self.paradict = gl_space_paradict(nlat=nlat, nlon=nlon)
Marco Selig's avatar
Marco Selig committed
946

947
948
949
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('float32'), np.dtype('float64')]:
Marco Selig's avatar
Marco Selig committed
950
            about.warnings.cprint("WARNING: data type set to default.")
951
952
            dtype = np.dtype('float')
        self.dtype = dtype
953

954
        # set datamodel
955
956
957
958
        if datamodel not in ['np']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'np'
        else:
959
            self.datamodel = datamodel
Marco Selig's avatar
Marco Selig committed
960
961

        self.discrete = False
962
        self.harmonic = False
963
964
965
        self.distances = tuple(gl.vol(self.paradict['nlat'],
                                      nlon=self.paradict['nlon']
                                      ).astype(np.float))
966
        self.comm = self._parse_comm(comm)
967
968
969

    @property
    def para(self):
970
        temp = np.array([self.paradict['nlat'],
971
972
                         self.paradict['nlon']], dtype=int)
        return temp
973

974
975
976
977
    @para.setter
    def para(self, x):
        self.paradict['nlat'] = x[0]
        self.paradict['nlon'] = x[1]
978

979
    def copy(self):
980
981
982
983
        return gl_space(nlat=self.paradict['nlat'],
                        nlon=self.paradict['nlon'],
                        dtype=self.dtype)

984
    def get_shape(self):
985
986
987
        return (np.int((self.paradict['nlat'] * self.paradict['nlon'])),)

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
988
989
990
991
992
993
994
995
996
997
998
999
1000
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            Since the :py:class:`gl_space` class only supports real-valued
            fields, the number of degrees of freedom is the number of pixels.
        """
Ultima's avatar
Ultima committed
1001
1002
1003
1004
        if split:
            return self.get_shape()
        else:
            return self.get_dim()
Marco Selig's avatar
Marco Selig committed
1005

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
    def get_meta_volume(self, split=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            For Gauss-Legendre pixelizations, the meta volumes are the pixel
            sizes.
        """
        if not split:
            return np.float(4 * np.pi)
        else:
            mol = self.cast(1, dtype=np.float)
            return self.calc_weight(mol, power=1)

1037
    # TODO: Extend to binning/log
1038
1039
1040
1041
1042
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['nlat']
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
1043
1044
1045
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
Marco Selig's avatar
Marco Selig committed
1046

Ultima's avatar
Ultima committed
1047
    def _check_codomain(self, codomain):
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`gl_space` and
            :py:class:`lm_space`.
        """
        if codomain is None:
            return False

Ultima's avatar
Ultima committed
1069
1070
1071
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

1072
1073
1074
        if self.datamodel is not codomain.datamodel:
            return False

1075
1076
1077
        if self.comm is not codomain.comm:
            return False

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        if isinstance(codomain, lm_space):
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']
            # nlon==2*lat-1
            # lmax==nlat-1
            # lmax==mmax
            if (nlon == 2*nlat-1) and (lmax == nlat-1) and (lmax == mmax):
                return True

        return False

    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Returns
            -------
            codomain : nifty.lm_space
                A compatible codomain.
        """
        nlat = self.paradict['nlat']
        lmax = nlat-1
        mmax = nlat-1
        # lmax,mmax = nlat-1,nlat-1
        if self.dtype == np.dtype('float32'):
1106
1107
1108
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex64,
                            datamodel=self.datamodel,
                            comm=self.comm)
1109
        else:
1110
1111
1112
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex128,
                            datamodel=self.datamodel,
                            comm=self.comm)
1113

1114
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultima's avatar
Ultima committed
1132
1133
                - "gau" (normal distribution with zero-mean and a given
                standard
Marco Selig's avatar
Marco Selig committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Ultima's avatar
Ultima committed
1144
1145
            spec : {scalar, list, numpy.array, nifty.field, function},
            *optional*
Marco Selig's avatar
Marco Selig committed
1146
1147
1148
1149
1150
1151
1152
1153
                Power spectrum (default: 1).
            codomain : nifty.lm_space, *optional*
                A compatible codomain for power indexing (default: None).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
1154
        arg = random.parse_arguments(self, **kwargs)
1155

1156
1157
        if(arg is None):
            x = np.zeros(self.get_shape(), dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
1158

Ultima's avatar
Ultima committed
1159
        elif(arg['random'] == "pm1"):
1160
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
1161

Ultima's avatar
Ultima committed
1162
        elif(arg['random'] == "gau"):
1163
1164
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1165
1166
                           mean=arg['mean'],
                           std=arg['std'])
Marco Selig's avatar
Marco Selig committed
1167

Ultima's avatar
Ultima committed
1168
        elif(arg['random'] == "syn"):
1169
1170
1171
1172
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = nlat - 1
            if self.dtype == np.dtype('float32'):
Ultima's avatar
Ultima committed
1173
                x = gl.synfast_f(arg['spec'],
1174
1175
                                 nlat=nlat, nlon=nlon,
                                 lmax=lmax, mmax=lmax, alm=False)
Marco Selig's avatar
Marco Selig committed
1176
            else:
Ultima's avatar
Ultima committed
1177
                x = gl.synfast(arg['spec'],
1178
1179
1180
1181
1182
                               nlat=nlat, nlon=nlon,
                               lmax=lmax, mmax=lmax, alm=False)
            # weight if discrete
            if self.discrete:
                x = self.calc_weight(x, power=0.5)
Marco Selig's avatar
Marco Selig committed
1183

Ultima's avatar
Ultima committed
1184
        elif(arg['random'] == "uni"):
1185
1186
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1187
1188
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
Marco Selig's avatar
Marco Selig committed
1189
1190

        else:
1191
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
1192
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
1193

1194
        return x
Marco Selig's avatar
Marco Selig committed
1195

1196
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
1212
        x = self.cast(x)
1213
        # weight
1214
1215
1216
1217
1218
1219
1220
1221
        nlat = self.paradict['nlat']
        nlon = self.paradict['nlon']
        if self.dtype == np.dtype('float32'):
            return gl.weight_f(x,
                               np.array(self.distances),
                               p=np.float32(power),
                               nlat=nlat, nlon=nlon,
                               overwrite=False)
</