field.py 49 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13 14 15 16 17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20

21
import ast
csongor's avatar
csongor committed
22 23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24 25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37 38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41 42 43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45 46
    In addition Field has methods to work with power-spectra.

47 48 49 50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54 55 56 57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59 60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62 63 64 65 66 67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69 70 71 72 73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75 76 77 78 79 80 81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82 83
        Name of the used distribution_strategy.

84 85 86 87 88 89 90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92 93 94 95 96 97 98 99 100 101 102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104 105 106 107 108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
114
        self.domain = self._parse_domain(domain=domain, val=val)
115
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
116

Theo Steininger's avatar
Theo Steininger committed
117
        self.dtype = self._infer_dtype(dtype=dtype,
118
                                       val=val)
119

120 121 122
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
123

124 125 126 127
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
128

129
    def _parse_domain(self, domain, val=None):
130
        if domain is None:
131 132 133 134
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
135
        elif isinstance(domain, DomainObject):
136
            domain = (domain,)
137 138 139
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
140
        for d in domain:
141
            if not isinstance(d, DomainObject):
142 143
                raise TypeError(
                    "Given domain contains something that is not a "
144
                    "DomainObject instance.")
csongor's avatar
csongor committed
145 146
        return domain

Theo Steininger's avatar
Theo Steininger committed
147 148 149 150 151 152 153 154 155 156
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
157

158
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
159
        if dtype is None:
160
            try:
161
                dtype = val.dtype
162
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
163 164 165
                try:
                    if val is None:
                        raise TypeError
166
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
167
                except(TypeError):
168
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
169
        else:
170
            dtype = np.dtype(dtype)
171

172 173
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
174
        return dtype
175

176 177
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
178
            if isinstance(val, distributed_data_object):
179
                distribution_strategy = val.distribution_strategy
180
            elif isinstance(val, Field):
181
                distribution_strategy = val.distribution_strategy
182
            else:
183
                self.logger.debug("distribution_strategy set to default!")
184
                distribution_strategy = gc['default_distribution_strategy']
185
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
186 187 188
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
189
        return distribution_strategy
190 191

    # ---Factory methods---
192

193
    @classmethod
194
    def from_random(cls, random_type, domain=None, dtype=None,
195
                    distribution_strategy=None, **kwargs):
196 197 198 199 200
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
201

202 203 204
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
205

206 207
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
208

209 210
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
211

212 213
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
214

215 216 217 218 219 220 221
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
222
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
223

224 225

        """
Theo Steininger's avatar
Theo Steininger committed
226

227
        # create a initially empty field
228
        f = cls(domain=domain, dtype=dtype,
229
                distribution_strategy=distribution_strategy)
230 231 232 233 234 235 236

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
237
        # extract the distributed_data_object from f and apply the appropriate
238 239 240
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
241 242 243 244 245 246 247 248 249

        comm = sample.comm
        size = comm.size
        if (sample.distribution_strategy in DISTRIBUTION_STRATEGIES['not'] and
                size > 1):
            seed = np.random.randint(10000000)
            seed = comm.bcast(seed, root=0)
            np.random.seed(seed)

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
273
        else:
274 275
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
276

277
        return random_arguments
csongor's avatar
csongor committed
278

279 280
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
281
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
282
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
283
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
284

Theo Steininger's avatar
Theo Steininger committed
285 286 287
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
288
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
289
        field, corresponding to the square root of the power spectrum.
290 291 292

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
293 294 295 296 297
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
298
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
299 300 301 302 303 304
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
305 306
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
307 308 309 310 311 312 313 314 315 316
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
317

318 319 320 321
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
322 323
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
324
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
325

326 327
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
328
        out : Field
329 330 331 332 333 334
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
335

336
        """
Theo Steininger's avatar
Theo Steininger committed
337

Theo Steininger's avatar
Theo Steininger committed
338
        # check if all spaces in `self.domain` are either harmonic or
339 340 341
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
342
                self.logger.info(
343
                    "Field has a space in `domain` which is neither "
344 345 346
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
347 348
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
349
            spaces = range(len(self.domain))
350 351

        if len(spaces) == 0:
352 353
            raise ValueError(
                "No space for analysis specified.")
354

355 356 357 358 359 360 361 362 363 364 365 366 367
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
368 369

        for space_index in spaces:
370 371
            parts = [self._single_power_analyze(
                                work_field=part,
372 373 374
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
375 376
                                binbounds=binbounds)
                     for part in parts]
377

378 379 380 381 382 383
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
384 385 386

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
387
                              binbounds):
388

389
        if not work_field.domain[space_index].harmonic:
390 391
            raise ValueError(
                "The analyzed space must be harmonic.")
392

393 394 395 396 397 398
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

399
        distribution_strategy = \
400 401
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
402

403
        harmonic_domain = work_field.domain[space_index]
404
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
405
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
406 407
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
408 409
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
410
                                pdomain=power_domain,
411
                                axes=work_field.domain_axes[space_index])
412 413

        # create the result field and put power_spectrum into it
414
        result_domain = list(work_field.domain)
415
        result_domain[space_index] = power_domain
416
        result_dtype = power_spectrum.dtype
417

418
        result_field = work_field.copy_empty(
419
                   domain=result_domain,
420
                   dtype=result_dtype,
421
                   distribution_strategy=power_spectrum.distribution_strategy)
422 423 424 425
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

426
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
427
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
428

Martin Reinecke's avatar
Martin Reinecke committed
429 430 431
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
432
        if axes is not None:
433 434 435 436 437
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
Theo Steininger's avatar
Theo Steininger committed
438

439
        power_spectrum = pindex.bincount(weights=field_val,
440
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
441
        rho = pdomain.rho
442 443 444 445 446 447 448 449
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

450 451
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
452 453
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
454
            raise ValueError("pindex's distribution strategy must be "
455 456 457 458 459 460
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
461
                    "A slicing distributor shall not be reshaped to "
462 463
                    "something non-sliced.")

Theo Steininger's avatar
Theo Steininger committed
464
        semiscaled_local_shape = [1, ] * len(target_shape)
Theo Steininger's avatar
Theo Steininger committed
465 466
        for i in range(len(axes)):
            semiscaled_local_shape[axes[i]] = pindex.local_shape[i]
467
        local_data = pindex.get_local_data(copy=False)
Theo Steininger's avatar
Theo Steininger committed
468
        semiscaled_local_data = local_data.reshape(semiscaled_local_shape)
469 470
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
Theo Steininger's avatar
Theo Steininger committed
471
        result_obj.data[:] = semiscaled_local_data
472 473 474

        return result_obj

475
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
476
                         mean=None, std=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
477
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
478

Theo Steininger's avatar
Theo Steininger committed
479 480
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
481

482 483 484
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
485 486 487
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
488
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
489 490
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
491
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
492 493 494 495 496 497
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
498
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
499 500 501
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
502

503 504 505 506
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
507
            stored in the `spaces` in `self`.
508

Theo Steininger's avatar
Theo Steininger committed
509 510 511 512 513 514
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

515 516 517
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
518 519 520 521 522

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

523
        """
Theo Steininger's avatar
Theo Steininger committed
524

525 526 527
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
528 529 530
        if spaces is None:
            spaces = range(len(self.domain))

531 532 533 534 535
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
536 537 538

        # create the result domain
        result_domain = list(self.domain)
539 540
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
541
            harmonic_domain = power_space.harmonic_partner
542
            result_domain[power_space_index] = harmonic_domain
543 544 545

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
546
        if real_power:
547
            result_list = [None]
548 549
        else:
            result_list = [None, None]
550

551 552 553
        if distribution_strategy is None:
            distribution_strategy = gc['default_distribution_strategy']

554 555
        result_list = [self.__class__.from_random(
                             'normal',
556 557 558
                             mean=mean,
                             std=std,
                             domain=result_domain,
559
                             dtype=np.complex,
560
                             distribution_strategy=distribution_strategy)
561 562 563 564 565 566
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
567 568

        spec = self.val.get_full_data()
569 570
        spec = np.sqrt(spec)

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

587
        if real_signal:
588
            result_val_list = [self._hermitian_decomposition(
589 590 591 592 593
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
594
                               for result_val in result_val_list]
595 596 597 598 599 600 601

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
602 603 604
            if not issubclass(result_val_list[0].dtype.type,
                              np.complexfloating):
                result = result.real
605
        else:
606 607 608 609
            result = result_list[0] + 1j*result_list[1]

        return result

610
    @staticmethod
611 612
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
613 614 615 616 617 618

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
619 620 621 622 623 624 625 626 627 628 629
        # if no flips at all where performed `h` is a real field.
        # if all spaces use the default implementation of doing nothing when
        # applying no flips, one can you object comparison to infer this case.

        if flipped_val is val:
            h = flipped_val.real
            a = 1j * flipped_val.imag
        else:
            flipped_val = flipped_val.conjugate()
            h = (val + flipped_val)/2.
            a = val - h
630 631

        # correct variance
632
        if preserve_gaussian_variance:
Martin Reinecke's avatar
Martin Reinecke committed
633 634
            assert issubclass(val.dtype.type, np.complexfloating),\
                    "complex input field is needed here"
635 636 637
            h *= np.sqrt(2)
            a *= np.sqrt(2)

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
#            The code below should not be needed in practice, since it would
#            only ever be called when hermitianizing a purely real field.
#            However it might be of educational use and keep us from forgetting
#            how these things are done ...

#            if not issubclass(val.dtype.type, np.complexfloating):
#                # in principle one must not correct the variance for the fixed
#                # points of the hermitianization. However, for a complex field
#                # the input field loses half of its power at its fixed points
#                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
#                # also necessary!
#                # => The hermitianization can be done on a space level since
#                # either nothing must be done (LMSpace) or ALL points need a
#                # factor of sqrt(2)
#                # => use the preserve_gaussian_variance flag in the
#                # hermitian_decomposition method above.
#
#                # This code is for educational purposes:
#                fixed_points = [domain[i].hermitian_fixed_points()
#                                for i in spaces]
#                fixed_points = [[fp] if fp is None else fp
#                                for fp in fixed_points]
#
#                for product_point in itertools.product(*fixed_points):
#                    slice_object = np.array((slice(None), )*len(val.shape),
#                                            dtype=np.object)
#                    for i, sp in enumerate(spaces):
#                        point_component = product_point[i]
#                        if point_component is None:
#                            point_component = slice(None)
#                        slice_object[list(domain_axes[sp])] = point_component
#
#                    slice_object = tuple(slice_object)
#                    h[slice_object] /= np.sqrt(2)
#                    a[slice_object] /= np.sqrt(2)

674 675
        return (h, a)

676 677
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
678 679 680

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
681
        pindex = power_space.pindex
682 683 684 685 686 687 688
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
689
            raise AttributeError(
Martin Reinecke's avatar
Martin Reinecke committed
690
                "The distribution_strategy of pindex does not fit the "
691 692 693 694 695 696 697
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

698 699 700 701 702
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
703
        # here, the power_spectrum is distributed into the new shape
704 705
        local_rescaler = spec[local_blow_up]
        return local_rescaler
706

Theo Steininger's avatar
Theo Steininger committed
707
    # ---Properties---
708

Theo Steininger's avatar
Theo Steininger committed
709
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
710
        """ Sets the fields distributed_data_object.
711 712 713

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
714
        new_val : scalar, array-like, Field, None *optional*
715 716
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
717

718
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
719 720
            If False, Field tries to not copy the input data but use it
            directly.
721 722 723 724 725 726
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
727

728 729
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
730 731
            new_val = new_val.copy()
        self._val = new_val
732
        return self
csongor's avatar
csongor committed
733

734
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
735
        """ Returns the distributed_data_object associated with this Field.
736 737 738 739

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
740 741
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
742

743 744 745 746 747 748 749 750 751
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
752

753 754 755
        if self._val is None:
            self.set_val(None)

756
        if copy:
Theo Steininger's avatar
Theo Steininger committed
757
            return self._val.copy()
758
        else:
Theo Steininger's avatar
Theo Steininger committed
759
            return self._val
csongor's avatar
csongor committed
760

Theo Steininger's avatar
Theo Steininger committed
761 762
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
763
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
764

765 766 767 768 769 770 771 772 773
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
774

775
        return self.get_val(copy=False)
csongor's avatar
csongor committed
776

Theo Steininger's avatar
Theo Steininger committed
777 778
    @val.setter
    def val(self, new_val):
779
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
780

781 782
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
783
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
784

785 786 787
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
788
            The output object. The tuple contains the dimensions of the spaces
789 790 791 792 793 794 795
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
796 797 798 799 800 801 802 803
        if not hasattr(self, '_shape'):
            shape_tuple = tuple(sp.shape for sp in self.domain)
            try:
                global_shape = reduce(lambda x, y: x + y, shape_tuple)
            except TypeError:
                global_shape = ()
            self._shape = global_shape
        return self._shape
csongor's avatar
csongor committed
804

805 806
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
807
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
808

Theo Steininger's avatar
Theo Steininger committed
809
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
810

811 812 813 814 815 816 817 818 819 820
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
821

822
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
823 824 825 826
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
827

828 829
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
830 831 832 833 834 835
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
836 837 838 839 840 841 842
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
843 844 845
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
846
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
847
        try:
Theo Steininger's avatar
Theo Steininger committed
848
            return reduce(lambda x, y: x * y, volume_tuple)
849
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
850
            return 0.
851

Theo Steininger's avatar
Theo Steininger committed
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
        real_part = self.val.real
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
        real_part = self.val.imag
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

Theo Steininger's avatar
Theo Steininger committed
870
    # ---Special unary/binary operations---
871

csongor's avatar
csongor committed
872
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
873
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
874

875 876
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
877
        x : scalar, d2o, Field, array_like
878 879
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
880

881
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
882 883
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
884

885 886 887 888 889 890 891 892 893 894
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
895 896
        if dtype is None:
            dtype = self.dtype
897 898
        else:
            dtype = np.dtype(dtype)
899

900 901
        casted_x = x

902
        for ind, sp in enumerate(self.domain):
903
            casted_x = sp.pre_cast(casted_x,
904 905 906
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
907 908

        for ind, sp in enumerate(self.domain):
909 910
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
911

912
        return casted_x
csongor's avatar
csongor committed
913

Theo Steininger's avatar
Theo Steininger committed
914
    def _actual_cast(self, x, dtype=None):
915
        if isinstance(x, Field):
csongor's avatar
csongor committed
916 917 918 919 920
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

921
        return_x = distributed_data_object(
922 923 924
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
925 926
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
927

928
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
929
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
930

931 932 933 934 935 936 937 938 939
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
940

941 942
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
943

944
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
945 946
            The new distribution strategy the Field shall have.

947 948 949 950 951 952 953 954 955 956
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
957

Theo Steininger's avatar
Theo Steininger committed
958
        copied_val = self.get_val(copy=True)
959 960 961 962
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
963 964
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
965

966
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
967 968 969
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
970 971 972 973 974
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
975

976 977 978 979
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
980

981 982
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
983

Theo Steininger's avatar
Theo Steininger committed
984
        distribution_strategy : string, all supported distribution strategies
985
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
986