correlated_fields_simple.py 7.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2020 Max-Planck-Society
# Authors: Philipp Arras
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

from functools import reduce
from operator import mul

import numpy as np

from .. import utilities
from ..domain_tuple import DomainTuple
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
from ..field import Field
from ..logger import logger
from ..multi_field import MultiField
from ..operators.adder import Adder
from ..operators.contraction_operator import ContractionOperator
from ..operators.diagonal_operator import DiagonalOperator
from ..operators.distributors import PowerDistributor
from ..operators.endomorphic_operator import EndomorphicOperator
from ..operators.harmonic_operators import HarmonicTransformOperator
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
38
from ..operators.normal_operators import LognormalTransform, NormalTransform
39
40
41
42
from ..operators.operator import Operator
from ..operators.simple_linear_operators import ducktape
from ..probing import StatCalculator
from ..sugar import full, makeDomain, makeField, makeOp
Philipp Arras's avatar
Philipp Arras committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from .correlated_fields import (_Distributor, _log_vol, _Normalization,
                                _relative_log_k_lengths, _SlopeRemover)


class _SimpleTwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
        assert len(self._target) == 1
        tgt = self._target[0]
        assert isinstance(tgt, PowerSpace)
        self._domain = makeDomain(UnstructuredDomain((2, tgt.shape[0] - 2)))
        self._log_vol = _log_vol(tgt)
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        from_third = slice(2, None)
        no_border = slice(1, -1)
        reverse = slice(None, None, -1)
        if mode == self.TIMES:
            x = x.val
            res = np.empty(self._target.shape)
            res[0] = res[1] = 0
            res[from_third] = np.cumsum(x[1])
            res[from_third] = (res[from_third] +
                               res[no_border])/2*self._log_vol + x[0]
            res[from_third] = np.cumsum(res[from_third])
        else:
            x = x.val_rw()
            res = np.zeros(self._domain.shape)
            x[from_third] = np.cumsum(x[from_third][reverse])[reverse]
            res[0] += x[from_third]
            x[from_third] *= self._log_vol/2.
            x[no_border] += x[from_third]
            res[1] += np.cumsum(x[from_third][reverse])[reverse]
        return makeField(self._tgt(mode), res)


class _SimpleAmplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, azm, totvol, key):
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)

        distributed_tgt = target = makeDomain(target)
        azm_expander = ContractionOperator(distributed_tgt, spaces=0).adjoint
        assert isinstance(target[0], PowerSpace)

        twolog = _SimpleTwoLogIntegrations(target)
        dom = twolog.domain

        shp = dom[0].shape
        expander = ContractionOperator(dom, spaces=0).adjoint
        ps_expander = ContractionOperator(twolog.target, spaces=0).adjoint

        # Prepare constant fields
        foo = np.zeros(shp)
        foo[0] = foo[1] = np.sqrt(_log_vol(target[0]))
        vflex = DiagonalOperator(makeField(dom[0], foo), dom, 0)

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
        vasp = DiagonalOperator(makeField(dom[0], foo), dom, 0)

        foo = np.ones(shp)
        foo[0] = _log_vol(target[0])**2/12.
        shift = DiagonalOperator(makeField(dom[0], foo), dom, 0)

        vslope = DiagonalOperator(
            makeField(target[0], _relative_log_k_lengths(target[0])), target,
            0)

        foo, bar = [np.zeros(target[0].shape) for _ in range(2)]
        bar[1:] = foo[0] = totvol
        vol0, vol1 = [
            DiagonalOperator(makeField(target[0], aa), target, 0)
            for aa in (foo, bar)
        ]

        # Prepare fields for Adder
        shift, vol0 = [op(full(op.domain, 1)) for op in (shift, vol0)]
        # End prepare constant fields

        slope = vslope @ ps_expander @ loglogavgslope
        sig_flex = vflex @ expander @ flexibility
        sig_asp = vasp @ expander @ asperity
        sig_fluc = vol1 @ ps_expander @ fluctuations
        sig_fluc = vol1 @ ps_expander @ fluctuations

        xi = ducktape(dom, None, key)
        sigma = sig_flex*(Adder(shift) @ sig_asp).ptw("sqrt")
        smooth = _SlopeRemover(target, 0) @ twolog @ (sigma*xi)
        op = _Normalization(target, 0) @ (slope + smooth)
        op = Adder(vol0) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
        self._op = op

    def __repr__(self):
        return self._op.__repr__
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177


class SimpleCorrelatedFieldMaker:
    def __init__(self,
                 target,
                 offset_mean,
                 offset_std_mean,
                 offset_std_std,
                 fluctuations_mean,
                 fluctuations_stddev,
                 flexibility_mean,
                 flexibility_stddev,
                 asperity_mean,
                 asperity_stddev,
                 loglogavgslope_mean,
                 loglogavgslope_stddev,
                 prefix='',
                 harmonic_partner=None):
        if harmonic_partner is None:
            harmonic_partner = target.get_default_codomain()
        else:
            target.check_codomain(harmonic_partner)
            harmonic_partner.check_codomain(target)
        fluct = LognormalTransform(fluctuations_mean, fluctuations_stddev,
                                   prefix + 'fluctuations', 0)
        flex = LognormalTransform(flexibility_mean, flexibility_stddev,
                                  prefix + 'flexibility', 0)
        asp = LognormalTransform(asperity_mean, asperity_stddev,
                                 prefix + 'asperity', 0)
        avgsl = NormalTransform(loglogavgslope_mean, loglogavgslope_stddev,
                                prefix + 'loglogavgslope', 0)
        zm = LognormalTransform(offset_std_mean, offset_std_std,
                                prefix + 'zeromode', 0)
Philipp Arras's avatar
Philipp Arras committed
178
179
180
        amp = _SimpleAmplitude(PowerSpace(harmonic_partner), fluct, flex, asp,
                               avgsl, zm, target.total_volume,
                               prefix + 'spectrum')
181
182
183
184
185
186
187
188
189
190
191
192
        ht = HarmonicTransformOperator(harmonic_partner, target)
        pd = PowerDistributor(harmonic_partner, amp.target[0])
        expander = ContractionOperator(harmonic_partner, spaces=0).adjoint
        self._op = ht(
            expander(zm)*pd(amp)*
            ducktape(harmonic_partner, None, prefix + 'xi'))
        if offset_mean is not None:
            self._op = Adder(full(self._op.target,
                                  float(offset_mean))) @ self._op

    def finalize(self):
        return self._op