space.py 13.3 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146

csongor's avatar
csongor committed
147
from nifty.config import about
theos's avatar
theos committed
148
from space_paradict import SpaceParadict
Marco Selig's avatar
Marco Selig committed
149

Ultimanet's avatar
Ultimanet committed
150

theos's avatar
theos committed
151
class Space(object):
Marco Selig's avatar
Marco Selig committed
152
    """
Ultimanet's avatar
Ultimanet committed
153
154
155
156
157
158
159
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
160

Ultimanet's avatar
Ultimanet committed
161
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
162

Ultimanet's avatar
Ultimanet committed
163
164
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
165
166
167

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
168
169
        num : int
            Number of points.
170
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
171
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
172

Ultimanet's avatar
Ultimanet committed
173
        Attributes
Marco Selig's avatar
Marco Selig committed
174
        ----------
Ultimanet's avatar
Ultimanet committed
175
176
        para : numpy.ndarray
            Array containing the number of points.
177
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
178
179
180
181
182
183
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
184
    """
185

186
    def __init__(self, dtype=np.dtype('float'), **kwargs):
Ultimanet's avatar
Ultimanet committed
187
188
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
189

Ultimanet's avatar
Ultimanet committed
190
191
192
193
            Parameters
            ----------
            num : int
                Number of points.
194
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
195
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
196

Ultimanet's avatar
Ultimanet committed
197
198
199
200
            Returns
            -------
            None.
        """
theos's avatar
theos committed
201
        self.paradict = SpaceParadict(**kwargs)
202

203
204
        # parse dtype
        dtype = np.dtype(dtype)
Ultima's avatar
Ultima committed
205
        self.dtype = dtype
theos's avatar
theos committed
206
        self._harmonic = None
207

theos's avatar
theos committed
208
209
210
    @property
    def harmonic(self):
        return self._harmonic
211

Ultima's avatar
Ultima committed
212
213
214
215
    def __hash__(self):
        # Extract the identifying parts from the vars(self) dict.
        result_hash = 0
        for (key, item) in vars(self).items():
216
            if key in []:
Ultima's avatar
Ultima committed
217
                continue
theos's avatar
theos committed
218
            result_hash ^= item.__hash__() ^ int(hash(key)/117)
Ultima's avatar
Ultima committed
219
220
        return result_hash

theos's avatar
theos committed
221
222
223
224
225
    def __eq__(self, x):
        if isinstance(x, type(self)):
            return hash(self) == hash(x)
        else:
            return False
226

227
    def copy(self):
theos's avatar
theos committed
228
        return self.__class__(dtype=self.dtype, **self.paradict.parameters)
229

230
231
    @property
    def shape(self):
232
233
        raise NotImplementedError(about._errors.cstring(
            "ERROR: There is no generic shape for the Space base class."))
Marco Selig's avatar
Marco Selig committed
234

235
236
    @property
    def dim(self):
237
238
        raise NotImplementedError(about._errors.cstring(
            "ERROR: There is no generic dim for the Space base class."))
Marco Selig's avatar
Marco Selig committed
239

240
    @property
241
    def total_volume(self):
theos's avatar
theos committed
242
243
        raise NotImplementedError(about._errors.cstring(
            "ERROR: There is no generic volume for the Space base class."))
244

245
    def complement_cast(self, x, axes=None):
246
247
        return x

248
    def weight(self, x, power=1, axes=None, inplace=False):
Marco Selig's avatar
Marco Selig committed
249
        """
Ultimanet's avatar
Ultimanet committed
250
251
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
252
253
254

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
255
256
257
258
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
259
260

            Returns
Ultimanet's avatar
Ultimanet committed
261
262
263
            -------
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
264
        """
265
        raise NotImplementedError
Ultima's avatar
Ultima committed
266

267
268
269
    def compute_k_array(self, distribution_strategy):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: There is no generic k_array for Space base class."))
270

271
272
    def get_plot(self, x, title="", vmin=None, vmax=None, unit=None,
                 norm=None, other=None, legend=False, save=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
273
        """
274
275
            Creates a plot of field values according to the specifications
            given by the parameters.
Marco Selig's avatar
Marco Selig committed
276
277
278

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
279
            x : numpy.ndarray
280
                Array containing the field values.
Marco Selig's avatar
Marco Selig committed
281
282
283

            Returns
            -------
284
            None
285

Ultimanet's avatar
Ultimanet committed
286
            Other parameters
287
            ----------------
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

Ultimanet's avatar
Ultimanet committed
307
        """
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        if not pl.isinteractive() and save is not None:
            about.warnings.cprint("WARNING: interactive mode off.")

        x = self.cast(x)

        fig = pl.figure(num=None,
                        figsize=(6.4, 4.8),
                        dpi=None,
                        facecolor="none",
                        edgecolor="none",
                        frameon=False,
                        FigureClass=pl.Figure)

        ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
        xaxes = np.arange(self.para[0], dtype=np.dtype('int'))

324
        if (norm == "log") and (vmin <= 0):
325
326
327
328
329
330
331
332
            raise ValueError(about._errors.cstring(
                "ERROR: nonpositive value(s)."))

        if issubclass(self.dtype.type, np.complexfloating):
            if vmin is None:
                vmin = min(x.real.min(), x.imag.min(), abs(x).min())
            if vmax is None:
                vmax = min(x.real.max(), x.imag.max(), abs(x).max())
Ultimanet's avatar
Ultimanet committed
333
        else:
334
335
336
337
            if vmin is None:
                vmin = x.min()
            if vmax is None:
                vmax = x.max()
Ultimanet's avatar
Ultimanet committed
338

339
340
341
        ax0.set_xlim(xaxes[0], xaxes[-1])
        ax0.set_xlabel("index")
        ax0.set_ylim(vmin, vmax)
342

343
344
        if(norm == "log"):
            ax0.set_yscale('log')
Marco Selig's avatar
Marco Selig committed
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
        if issubclass(self.dtype.type, np.complexfloating):
            ax0.scatter(xaxes, self.unary_operation(x, op='abs'),
                        color=[0.0, 0.5, 0.0], marker='o',
                        label="graph (absolute)", facecolor="none", zorder=1)
            ax0.scatter(xaxes, self.unary_operation(x, op='real'),
                        color=[0.0, 0.5, 0.0], marker='s',
                        label="graph (real part)", facecolor="none", zorder=1)
            ax0.scatter(xaxes, self.unary_operation(x, op='imag'),
                        color=[0.0, 0.5, 0.0], marker='D',
                        label="graph (imaginary part)", facecolor="none",
                        zorder=1)
        else:
            ax0.scatter(xaxes, x, color=[0.0, 0.5, 0.0], marker='o',
                        label="graph 0", zorder=1)
Marco Selig's avatar
Marco Selig committed
360

361
362
363
364
365
366
367
368
369
370
371
372
        if other is not None:
            if not isinstance(other, tuple):
                other = (other, )
            imax = max(1, len(other) - 1)
            for ii in xrange(len(other)):
                ax0.scatter(xaxes, self.dtype(other[ii]),
                            color=[max(0.0, 1.0 - (2 * ii / imax)**2),
                                   0.5 * ((2 * ii - imax) / imax)**2,
                                   max(0.0, 1.0 -
                                       (2 * (ii - imax) / imax)**2)],
                            marker='o', label="'other' graph " + str(ii),
                            zorder=-ii)
Ultimanet's avatar
Ultimanet committed
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
        if legend:
            ax0.legend()

        if unit is not None:
            unit = " [" + unit + "]"
        else:
            unit = ""

        ax0.set_ylabel("values" + unit)
        ax0.set_title(title)

        if save is not None:
            fig.savefig(str(save), dpi=None,
                        facecolor="none", edgecolor="none")
            pl.close(fig)
        else:
            fig.canvas.draw()
Marco Selig's avatar
Marco Selig committed
391

392
    def __repr__(self):
Ultima's avatar
Ultima committed
393
394
        string = ""
        string += str(type(self)) + "\n"
Ultima's avatar
Ultima committed
395
        string += "paradict: " + str(self.paradict) + "\n"
396
397
        string += "dtype: " + str(self.dtype) + "\n"
        string += "harmonic: " + str(self.harmonic) + "\n"
Ultima's avatar
Ultima committed
398
        return string