test_minimizers.py 7.3 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
19
import unittest
20
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from numpy.testing import assert_allclose, assert_equal
Martin Reinecke's avatar
Martin Reinecke committed
22
import nifty4 as ift
Martin Reinecke's avatar
changes    
Martin Reinecke committed
23
from itertools import product
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
24
from test.common import expand
Martin Reinecke's avatar
Martin Reinecke committed
25
from nose.plugins.skip import SkipTest
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
26

27
28
IC = ift.GradientNormController(tol_abs_gradnorm=1e-5, iteration_limit=1000)

Martin Reinecke's avatar
changes    
Martin Reinecke committed
29
spaces = [ift.RGSpace([1024], distances=0.123), ift.HPSpace(32)]
30

31
32
33
34
35
36
37
minimizers = [ift.VL_BFGS(IC),
              ift.NonlinearCG(IC, "Polak-Ribiere"),
              # ift.NonlinearCG(IC, "Hestenes-Stiefel"),
              ift.NonlinearCG(IC, "Fletcher-Reeves"),
              ift.NonlinearCG(IC, "5.49"),
              ift.NewtonCG(IC),
              ift.L_BFGS_B(IC)]
Martin Reinecke's avatar
Martin Reinecke committed
38

39
40
41
newton_minimizers = [ift.RelaxedNewton(IC)]
quadratic_only_minimizers = [ift.ConjugateGradient(IC)]
slow_minimizers = [ift.SteepestDescent(IC)]
42

43

Martin Reinecke's avatar
changes    
Martin Reinecke committed
44
class Test_Minimizers(unittest.TestCase):
45

46
47
48
    @expand(product(minimizers + newton_minimizers +
                    quadratic_only_minimizers + slow_minimizers, spaces))
    def test_quadratic_minimization(self, minimizer, space):
49
        np.random.seed(42)
Martin Reinecke's avatar
changes    
Martin Reinecke committed
50
51
52
        starting_point = ift.Field.from_random('normal', domain=space)*10
        covariance_diagonal = ift.Field.from_random(
                                  'uniform', domain=space) + 0.5
53
        covariance = ift.DiagonalOperator(covariance_diagonal)
54
        required_result = ift.Field.ones(space, dtype=np.float64)
55

Martin Reinecke's avatar
Martin Reinecke committed
56
57
58
        try:
            energy = ift.QuadraticEnergy(A=covariance, b=required_result,
                                         position=starting_point)
59

Martin Reinecke's avatar
Martin Reinecke committed
60
61
62
63
64
            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
Martin Reinecke's avatar
Martin Reinecke committed
65
66
        assert_allclose(energy.position.to_global_data(),
                        1./covariance_diagonal.to_global_data(),
Martin Reinecke's avatar
changes    
Martin Reinecke committed
67
                        rtol=1e-3, atol=1e-3)
Martin Reinecke's avatar
Martin Reinecke committed
68

69
70
    @expand(product(minimizers+newton_minimizers))
    def test_rosenbrock(self, minimizer):
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        try:
            from scipy.optimize import rosen, rosen_der, rosen_hess_prod
        except ImportError:
            raise SkipTest
        np.random.seed(42)
        space = ift.UnstructuredDomain((2,))
        starting_point = ift.Field.from_random('normal', domain=space)*10

        class RBEnergy(ift.Energy):
            def __init__(self, position):
                super(RBEnergy, self).__init__(position)

            @property
            def value(self):
                return rosen(self._position.to_global_data().copy())

            @property
            def gradient(self):
                inp = self._position.to_global_data().copy()
                out = ift.Field.from_global_data(space, rosen_der(inp))
                return out

            @property
            def curvature(self):
                class RBCurv(ift.EndomorphicOperator):
                    def __init__(self, loc):
                        self._loc = loc.to_global_data().copy()

                    @property
                    def domain(self):
                        return space

                    @property
                    def capability(self):
                        return self.TIMES

                    def apply(self, x, mode):
                        self._check_input(x, mode)
                        inp = x.to_global_data().copy()
                        out = ift.Field.from_global_data(
                            space, rosen_hess_prod(self._loc.copy(), inp))
                        return out
Martin Reinecke's avatar
Martin Reinecke committed
113

Martin Reinecke's avatar
Martin Reinecke committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
                t1 = ift.GradientNormController(tol_abs_gradnorm=1e-5,
                                                iteration_limit=1000)
                t2 = ift.ConjugateGradient(controller=t1)
                return ift.InversionEnabler(RBCurv(self._position),
                                            inverter=t2)

        try:
            energy = RBEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 1.,
                        rtol=1e-3, atol=1e-3)
130

131
132
    @expand(product(minimizers+slow_minimizers))
    def test_gauss(self, minimizer):
133
        space = ift.UnstructuredDomain((1,))
134
        starting_point = ift.Field(space, val=3.)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

        class ExpEnergy(ift.Energy):
            def __init__(self, position):
                super(ExpEnergy, self).__init__(position)

            @property
            def value(self):
                x = self.position.to_global_data()[0]
                return -np.exp(-(x**2))

            @property
            def gradient(self):
                x = self.position.to_global_data()[0]
                return ift.Field(self.position.domain, val=2*x*np.exp(-(x**2)))

            @property
            def curvature(self):
                x = self.position.to_global_data()[0]
                v = (2 - 4*x*x)*np.exp(-x**2)
                return ift.DiagonalOperator(
                    ift.Field(self.position.domain, val=v))

        try:
            energy = ExpEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 0.,
                        atol=1e-3)
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

    @expand(product(minimizers+newton_minimizers+slow_minimizers))
    def test_cosh(self, minimizer):
        space = ift.UnstructuredDomain((1,))
        starting_point = ift.Field(space, val=3.)

        class CoshEnergy(ift.Energy):
            def __init__(self, position):
                super(CoshEnergy, self).__init__(position)

            @property
            def value(self):
                x = self.position.to_global_data()[0]
                return np.cosh(x)

            @property
            def gradient(self):
                x = self.position.to_global_data()[0]
                return ift.Field(self.position.domain, val=np.sinh(x))

            @property
            def curvature(self):
                x = self.position.to_global_data()[0]
                v = np.cosh(x)
                return ift.DiagonalOperator(
                    ift.Field(self.position.domain, val=v))

        try:
            energy = CoshEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 0.,
                        atol=1e-3)