test_minimizers.py 7.3 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15 16 17 18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
19
import unittest
20
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
21
from numpy.testing import assert_allclose, assert_equal
Martin Reinecke's avatar
Martin Reinecke committed
22
import nifty4 as ift
Martin Reinecke's avatar
changes  
Martin Reinecke committed
23
from itertools import product
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
24
from test.common import expand
Martin Reinecke's avatar
Martin Reinecke committed
25
from nose.plugins.skip import SkipTest
Matevz, Sraml (sraml)'s avatar
Matevz, Sraml (sraml) committed
26

27 28
IC = ift.GradientNormController(tol_abs_gradnorm=1e-5, iteration_limit=1000)

Martin Reinecke's avatar
changes  
Martin Reinecke committed
29
spaces = [ift.RGSpace([1024], distances=0.123), ift.HPSpace(32)]
30

31 32 33 34 35 36 37
minimizers = [ift.VL_BFGS(IC),
              ift.NonlinearCG(IC, "Polak-Ribiere"),
              # ift.NonlinearCG(IC, "Hestenes-Stiefel"),
              ift.NonlinearCG(IC, "Fletcher-Reeves"),
              ift.NonlinearCG(IC, "5.49"),
              ift.NewtonCG(IC),
              ift.L_BFGS_B(IC)]
Martin Reinecke's avatar
Martin Reinecke committed
38

39 40 41
newton_minimizers = [ift.RelaxedNewton(IC)]
quadratic_only_minimizers = [ift.ConjugateGradient(IC)]
slow_minimizers = [ift.SteepestDescent(IC)]
42

43

Martin Reinecke's avatar
changes  
Martin Reinecke committed
44
class Test_Minimizers(unittest.TestCase):
45

46 47 48
    @expand(product(minimizers + newton_minimizers +
                    quadratic_only_minimizers + slow_minimizers, spaces))
    def test_quadratic_minimization(self, minimizer, space):
49
        np.random.seed(42)
Martin Reinecke's avatar
changes  
Martin Reinecke committed
50 51 52
        starting_point = ift.Field.from_random('normal', domain=space)*10
        covariance_diagonal = ift.Field.from_random(
                                  'uniform', domain=space) + 0.5
53
        covariance = ift.DiagonalOperator(covariance_diagonal)
54
        required_result = ift.Field.ones(space, dtype=np.float64)
55

Martin Reinecke's avatar
Martin Reinecke committed
56 57 58
        try:
            energy = ift.QuadraticEnergy(A=covariance, b=required_result,
                                         position=starting_point)
59

Martin Reinecke's avatar
Martin Reinecke committed
60 61 62 63 64
            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
Martin Reinecke's avatar
Martin Reinecke committed
65 66
        assert_allclose(energy.position.to_global_data(),
                        1./covariance_diagonal.to_global_data(),
Martin Reinecke's avatar
changes  
Martin Reinecke committed
67
                        rtol=1e-3, atol=1e-3)
Martin Reinecke's avatar
Martin Reinecke committed
68

69 70
    @expand(product(minimizers+newton_minimizers))
    def test_rosenbrock(self, minimizer):
Martin Reinecke's avatar
Martin Reinecke committed
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        try:
            from scipy.optimize import rosen, rosen_der, rosen_hess_prod
        except ImportError:
            raise SkipTest
        np.random.seed(42)
        space = ift.UnstructuredDomain((2,))
        starting_point = ift.Field.from_random('normal', domain=space)*10

        class RBEnergy(ift.Energy):
            def __init__(self, position):
                super(RBEnergy, self).__init__(position)

            @property
            def value(self):
                return rosen(self._position.to_global_data().copy())

            @property
            def gradient(self):
                inp = self._position.to_global_data().copy()
                out = ift.Field.from_global_data(space, rosen_der(inp))
                return out

            @property
            def curvature(self):
                class RBCurv(ift.EndomorphicOperator):
                    def __init__(self, loc):
                        self._loc = loc.to_global_data().copy()

                    @property
                    def domain(self):
                        return space

                    @property
                    def capability(self):
                        return self.TIMES

                    def apply(self, x, mode):
                        self._check_input(x, mode)
                        inp = x.to_global_data().copy()
                        out = ift.Field.from_global_data(
                            space, rosen_hess_prod(self._loc.copy(), inp))
                        return out
Martin Reinecke's avatar
Martin Reinecke committed
113

Martin Reinecke's avatar
Martin Reinecke committed
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
                t1 = ift.GradientNormController(tol_abs_gradnorm=1e-5,
                                                iteration_limit=1000)
                t2 = ift.ConjugateGradient(controller=t1)
                return ift.InversionEnabler(RBCurv(self._position),
                                            inverter=t2)

        try:
            energy = RBEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 1.,
                        rtol=1e-3, atol=1e-3)
130

131 132
    @expand(product(minimizers+slow_minimizers))
    def test_gauss(self, minimizer):
133
        space = ift.UnstructuredDomain((1,))
134
        starting_point = ift.Field(space, val=3.)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

        class ExpEnergy(ift.Energy):
            def __init__(self, position):
                super(ExpEnergy, self).__init__(position)

            @property
            def value(self):
                x = self.position.to_global_data()[0]
                return -np.exp(-(x**2))

            @property
            def gradient(self):
                x = self.position.to_global_data()[0]
                return ift.Field(self.position.domain, val=2*x*np.exp(-(x**2)))

            @property
            def curvature(self):
                x = self.position.to_global_data()[0]
                v = (2 - 4*x*x)*np.exp(-x**2)
                return ift.DiagonalOperator(
                    ift.Field(self.position.domain, val=v))

        try:
            energy = ExpEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 0.,
                        atol=1e-3)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

    @expand(product(minimizers+newton_minimizers+slow_minimizers))
    def test_cosh(self, minimizer):
        space = ift.UnstructuredDomain((1,))
        starting_point = ift.Field(space, val=3.)

        class CoshEnergy(ift.Energy):
            def __init__(self, position):
                super(CoshEnergy, self).__init__(position)

            @property
            def value(self):
                x = self.position.to_global_data()[0]
                return np.cosh(x)

            @property
            def gradient(self):
                x = self.position.to_global_data()[0]
                return ift.Field(self.position.domain, val=np.sinh(x))

            @property
            def curvature(self):
                x = self.position.to_global_data()[0]
                v = np.cosh(x)
                return ift.DiagonalOperator(
                    ift.Field(self.position.domain, val=v))

        try:
            energy = CoshEnergy(position=starting_point)

            (energy, convergence) = minimizer(energy)
        except NotImplementedError:
            raise SkipTest

        assert_equal(convergence, IC.CONVERGED)
        assert_allclose(energy.position.to_global_data(), 0.,
                        atol=1e-3)