correlated_fields.py 15.2 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..sugar import from_global_data, full, makeDomain
35
from ..probing import StatCalculator
36

Philipp Arras's avatar
Philipp Arras committed
37

38
39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40
41
42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43
44
    return logmean, logsig

Philipp Arras's avatar
Philipp Arras committed
45

46
class _lognormal_moment_matching(Operator):
Philipp Arras's avatar
Philipp Arras committed
47
    def __init__(self, mean, sig, key):
48
49
50
51
52
53
54
55
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain = op.domain
        self._target = op.target
        self.apply = op.apply
56

57
58
59
    @property
    def mean(self):
        return self._mean
Philipp Arras's avatar
Philipp Arras committed
60

61
62
63
    @property
    def std(self):
        return self._sig
64

Philipp Arras's avatar
Philipp Arras committed
65

Philipp Arras's avatar
Philipp Arras committed
66
67
68
69
70
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
71
72
73
74
def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
75
76
77
78
79
80
81
82
83
84
85
def _logkl(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
    return logkl


Philipp Frank's avatar
Philipp Frank committed
86
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
87
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
88
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
89
90
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
91
        logkl = _logkl(self._domain)
92
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
93
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
94

95
96
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
97
98
        x = x.to_global_data()
        if mode == self.TIMES:
99
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
100
        else:
101
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
102
103
            res += x
            res[-1] -= (x*self._sc).sum()
104
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
105

106

Philipp Arras's avatar
Philipp Arras committed
107
108
109
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
110
111
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
137
138
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
139
140
141
142
143
144
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
145
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
146
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
166
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
167
168
169
170
171
172
173
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


174
175
176
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

Philipp Arras's avatar
Philipp Arras committed
199
200
201
202
        dist = np.zeros(twolog.domain.shape, dtype=np.float64)
        dist[0] += 1
        scale = VdotOperator(from_global_data(twolog.domain,
                                              dist)).adjoint @ asperity
Philipp Arras's avatar
Philipp Arras committed
203
204
205
206
207
208

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()
        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Arras's avatar
Philipp Arras committed
209

Philipp Arras's avatar
Philipp Arras committed
210
        tg = smooth.target
Philipp Arras's avatar
Philipp Arras committed
211
212
        noslope = _SlopeRemover(tg) @ smooth
        _t = VdotOperator(from_global_data(tg, _logkl(tg))).adjoint
Philipp Arras's avatar
Philipp Arras committed
213
        smoothslope = _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
214
215
216
217
218
219
220
221
222

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
Philipp Arras's avatar
Philipp Arras committed
223
224
        op = adder @ ((expander @ fluctuations)*normal_ampl)
        self.apply = op.apply
225
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
226
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
227

228
229
230
231

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
232
        self._azm = None
233
234
235
236
237
238
239
240
241
242
243

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
244
                         prefix='',
Philipp Arras's avatar
Philipp Arras committed
245
                         index=None):
Philipp Arras's avatar
Philipp Arras committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
270
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
271
                        prefix + 'loglogavgslope')
272
273
274
275
276
        amp = _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum')
        if index is not None:
            self._a.insert(index, amp)
        else:
            self._a.append(amp)
277
278
279

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
280
        self._azm = zeromode
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
303

304
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
305
306
307
308

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
309
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
310
311
312
313
314
315
316
317
318
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
319
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
320
321
322
323
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
324
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
325
326
327

    @property
    def amplitudes(self):
328
        return self._a
329

330
331
332
333
334
335
336
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
337
            raise NotImplementedError
338
339
340
341
342
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
Philipp Arras's avatar
Philipp Arras committed
343
344
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
        return (Adder(full(q.target, -1.)) @ q).sqrt()
345

Philipp Arras's avatar
Philipp Arras committed
346
    def slice_fluctuation(self, space):
347
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
348
            raise NotImplementedError
349
350
351
352
353
354
355
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
356
                q = q*fl**2
357
            else:
Philipp Arras's avatar
Philipp Arras committed
358
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
359
        return q.sqrt()
Philipp Arras's avatar
Philipp Arras committed
360
361

    def average_fluctuation(self, space):
362
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
363
            raise NotImplementedError
364
365
366
367
368
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

Philipp Arras's avatar
Philipp Arras committed
369
    def offset_amplitude_realized(self, samples):
370
371
372
373
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))
Philipp Arras's avatar
Philipp Arras committed
374
375

    def total_fluctuation_realized(self, samples):
376
377
        res = 0.
        for s in samples:
Philipp Arras's avatar
Philipp Arras committed
378
            res = res + (s - s.mean())**2
379
380
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
381
382

    def average_fluctuation_realized(self, samples, space):
383
384
385
386
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
387
        spaces = ()
388
389
390
391
392
393
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
Philipp Arras's avatar
Philipp Arras committed
394
            res = res + (r - r.mean())**2
395
396
        res = res/len(samples)
        return np.sqrt(res.mean())
Philipp Arras's avatar
Philipp Arras committed
397
398

    def slice_fluctuation_realized(self, samples, space):
399
400
401
402
403
404
405
406
407
408
409
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Arras's avatar
Philipp Arras committed
410
        res = res1.mean() - res2.mean()
411
412
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
413
    def stats(self, op, samples):
414
415
416
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
417
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()
Philipp Arras's avatar
Philipp Arras committed
418
419

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
420
421
422
423
424
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
Philipp Arras's avatar
Philipp Arras committed
425
426
            mu, sig = _lognormal_moments(m, std)
            flm = np.exp(mu + sig*np.random.normal(size=nsamples))
427
428
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
Philipp Arras's avatar
Philipp Arras committed
429
        return fluctuations_slice_mean/scm