energy_operators.py 18 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Philipp Arras's avatar
Philipp Arras committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
24
25
from ..multi_domain import MultiDomain
from ..multi_field import MultiField
from ..sugar import makeDomain, makeOp
Philipp Arras's avatar
Philipp Arras committed
26
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
28
from .sampling_enabler import SamplingDtypeSetter, SamplingEnabler
29
from .scaling_operator import ScalingOperator
Philipp Arras's avatar
Cleanup    
Philipp Arras committed
30
from .simple_linear_operators import VdotOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
33
34
35
36


def _check_sampling_dtype(domain, dtypes):
    if dtypes is None:
        return
    if isinstance(domain, DomainTuple):
Philipp Arras's avatar
Philipp Arras committed
37
38
        np.dtype(dtypes)
        return
Philipp Arras's avatar
Philipp Arras committed
39
    elif isinstance(domain, MultiDomain):
Philipp Arras's avatar
Philipp Arras committed
40
41
42
43
44
45
46
        if isinstance(dtypes, dict):
            for dt in dtypes.values():
                np.dtype(dt)
            if set(domain.keys()) == set(dtypes.keys()):
                return
        else:
            np.dtype(dtypes)
Philipp Arras's avatar
Philipp Arras committed
47
            return
Philipp Arras's avatar
Philipp Arras committed
48
    raise TypeError
Philipp Arras's avatar
Philipp Arras committed
49
50


51
52
53
54
def _iscomplex(dtype):
    return np.issubdtype(dtype, np.complexfloating)


Philipp Arras's avatar
Philipp Arras committed
55
56
57
58
59
60
61
62
63
64
65
def _field_to_dtype(field):
    if isinstance(field, Field):
        dt = field.dtype
    elif isinstance(field, MultiField):
        dt = {kk: ff.dtype for kk, ff in field.items()}
    else:
        raise TypeError
    _check_sampling_dtype(field.domain, dt)
    return dt


Martin Reinecke's avatar
Martin Reinecke committed
66
class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
67
    """Operator which has a scalar domain as target domain.
68

Martin Reinecke's avatar
Martin Reinecke committed
69
    It is intended as an objective function for field inference.
70

Philipp Arras's avatar
Philipp Arras committed
71
72
73
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
74
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
75
       divergence.
76
    """
Martin Reinecke's avatar
Martin Reinecke committed
77
78
79
    _target = DomainTuple.scalar_domain()


80
81
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
82

Philipp Arras's avatar
Philipp Arras committed
83
84
85
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
86
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
87
    """
Philipp Arras's avatar
Philipp Arras committed
88

Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
    def __init__(self, domain):
        self._domain = domain

Philipp Arras's avatar
Philipp Arras committed
92
    def apply(self, x):
93
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
94
95
        if x.jac is None:
            return x.vdot(x)
Philipp Arras's avatar
Philipp Arras committed
96
97
        res = x.val.vdot(x.val)
        return x.new(res, VdotOperator(2*x.val))
Martin Reinecke's avatar
Martin Reinecke committed
98

Martin Reinecke's avatar
Martin Reinecke committed
99

Martin Reinecke's avatar
Martin Reinecke committed
100
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
101
    """Computes the L2-norm of a Field or MultiField with respect to a
102
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
103
104
105

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
106
107
108

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
109
    endo : EndomorphicOperator
110
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
111
    """
Philipp Arras's avatar
Philipp Arras committed
112
113

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
114
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
115
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
116
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
117
118
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
119

Philipp Arras's avatar
Philipp Arras committed
120
    def apply(self, x):
121
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
122
        if x.jac is None:
Philipp Arras's avatar
Philipp Arras committed
123
124
125
            return 0.5*x.vdot(self._op(x))
        res = 0.5*x.val.vdot(self._op(x.val))
        return x.new(res, VdotOperator(self._op(x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
126

Philipp Arras's avatar
Philipp Arras committed
127

128
class VariableCovarianceGaussianEnergy(EnergyOperator):
Reimar Leike's avatar
Reimar Leike committed
129
    """Computes the negative log pdf of a Gaussian with unknown covariance.
130

Reimar Leike's avatar
Reimar Leike committed
131
    The covariance is assumed to be diagonal.
132
133

    .. math ::
134
        E(s,D) = - \\log G(s, C) = 0.5 (s)^\\dagger C (s) - 0.5 tr log(C),
135
136

    an information energy for a Gaussian distribution with residual s and
137
    inverse diagonal covariance C.
Reimar Leike's avatar
Reimar Leike committed
138
139
    The domain of this energy will be a MultiDomain with two keys,
    the target will be the scalar domain.
140
141
142

    Parameters
    ----------
143
    domain : Domain, DomainTuple, tuple of Domain
Reimar Leike's avatar
Reimar Leike committed
144
        domain of the residual and domain of the covariance diagonal.
145

146
    residual_key : key
Philipp Arras's avatar
Philipp Arras committed
147
        Residual key of the Gaussian.
148

149
    inverse_covariance_key : key
150
        Inverse covariance diagonal key of the Gaussian.
Philipp Arras's avatar
Philipp Arras committed
151

152
    sampling_dtype : np.dtype
Philipp Arras's avatar
Philipp Arras committed
153
        Data type of the samples. Usually either 'np.float*' or 'np.complex*'
154
155
    """

Philipp Arras's avatar
Philipp Arras committed
156
    def __init__(self, domain, residual_key, inverse_covariance_key, sampling_dtype):
Philipp Arras's avatar
Philipp Arras committed
157
158
        self._kr = str(residual_key)
        self._ki = str(inverse_covariance_key)
Philipp Arras's avatar
Philipp Arras committed
159
        dom = DomainTuple.make(domain)
Philipp Arras's avatar
Philipp Arras committed
160
        self._domain = MultiDomain.make({self._kr: dom, self._ki: dom})
Philipp Arras's avatar
Philipp Arras committed
161
162
        self._dt = {self._kr: sampling_dtype, self._ki: np.float64}
        _check_sampling_dtype(self._domain, self._dt)
163
        self._cplx = _iscomplex(sampling_dtype)
164

Philipp Arras's avatar
Philipp Arras committed
165
    def apply(self, x):
166
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
167
        r, i = x[self._kr], x[self._ki]
Philipp Arras's avatar
Philipp Arras committed
168
169
170
171
        if self._cplx:
            res = 0.5*r.vdot(r*i.real).real - i.ptw("log").sum()
        else:
            res = 0.5*(r.vdot(r*i) - i.ptw("log").sum())
Martin Reinecke's avatar
more    
Martin Reinecke committed
172
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
173
            return res
Philipp Arras's avatar
Philipp Arras committed
174
175
        met = i.val if self._cplx else 0.5*i.val
        met = MultiField.from_dict({self._kr: i.val, self._ki: met**(-2)})
Philipp Arras's avatar
Philipp Arras committed
176
        return res.add_metric(SamplingDtypeSetter(makeOp(met), self._dt))
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        from .simplify_for_const import ConstantEnergyOperator
        assert len(c_inp.keys()) == 1
        key = c_inp.keys()[0]
        assert key in self._domain.keys()
        cst = c_inp[key]
        if key == self._kr:
            res = _SpecialGammaEnergy(cst).ducktape(self._ki)
        else:
            dt = self._dt[self._kr]
            res = GaussianEnergy(inverse_covariance=makeOp(cst),
                                 sampling_dtype=dt).ducktape(self._kr)
            trlog = cst.log().sum().val_rw()
            if not _iscomplex(dt):
                trlog /= 2
            res = res + ConstantEnergyOperator(res.domain, -trlog)
        res = res + ConstantEnergyOperator(self._domain, 0.)
        assert res.domain is self.domain
        assert res.target is self.target
        return None, res


class _SpecialGammaEnergy(EnergyOperator):
    def __init__(self, residual):
        self._domain = DomainTuple.make(residual.domain)
        self._resi = residual
        self._cplx = _iscomplex(self._resi.dtype)
        self._scale = ScalingOperator(self._domain, 1 if self._cplx else .5)

    def apply(self, x):
        self._check_input(x)
        r = self._resi
        if self._cplx:
            res = 0.5*(r*x.real).vdot(r).real - x.ptw("log").sum()
        else:
            res = 0.5*((r*x).vdot(r) - x.ptw("log").sum())
        if not x.want_metric:
            return res
        met = makeOp((self._scale(x.val))**(-2))
        return res.add_metric(SamplingDtypeSetter(met, self._resi.dtype))

Martin Reinecke's avatar
Martin Reinecke committed
219
220

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
221
    """Computes a negative-log Gaussian.
222

Philipp Arras's avatar
Philipp Arras committed
223
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
224

Philipp Arras's avatar
Philipp Arras committed
225
226
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
227

Philipp Arras's avatar
Philipp Arras committed
228
229
    an information energy for a Gaussian distribution with mean m and
    covariance D.
230

Philipp Arras's avatar
Philipp Arras committed
231
232
233
234
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
235
236
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
237
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
238
239
240
241
242
243
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
244
    """
Martin Reinecke's avatar
Martin Reinecke committed
245

Philipp Arras's avatar
Philipp Arras committed
246
    def __init__(self, mean=None, inverse_covariance=None, domain=None, sampling_dtype=None):
Martin Reinecke's avatar
Martin Reinecke committed
247
248
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
249
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
250
251
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
252
253
254
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
255
256
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
257
258
259
260
261
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Philipp Arras's avatar
Philipp Arras committed
262
263
264
265
266
267
268
269
270
271
272

        # Infer sampling dtype
        if self._mean is None:
            _check_sampling_dtype(self._domain, sampling_dtype)
        else:
            if sampling_dtype is None:
                sampling_dtype = _field_to_dtype(self._mean)
            else:
                if sampling_dtype != _field_to_dtype(self._mean):
                    raise ValueError("Sampling dtype and mean not compatible")

273
        if inverse_covariance is None:
274
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Philipp Arras's avatar
Philipp Arras committed
275
            self._met = ScalingOperator(self._domain, 1)
276
            self._trivial_invcov = True
Martin Reinecke's avatar
Martin Reinecke committed
277
        else:
278
            self._op = QuadraticFormOperator(inverse_covariance)
Philipp Arras's avatar
Philipp Arras committed
279
            self._met = inverse_covariance
280
            self._trivial_invcov = False
Philipp Arras's avatar
Philipp Arras committed
281
        if sampling_dtype is not None:
282
            self._met = SamplingDtypeSetter(self._met, sampling_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
283
284

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
285
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
286
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
287
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
288
        else:
Philipp Arras's avatar
Philipp Arras committed
289
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
290
291
                raise ValueError("domain mismatch")

Philipp Arras's avatar
Philipp Arras committed
292
    def apply(self, x):
293
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
294
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
295
        res = self._op(residual).real
Martin Reinecke's avatar
more    
Martin Reinecke committed
296
        if x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
297
298
            return res.add_metric(self._met)
        return res
Martin Reinecke's avatar
Martin Reinecke committed
299

Philipp Arras's avatar
Philipp Arras committed
300
301
302
303
    def __repr__(self):
        dom = '()' if isinstance(self.domain, DomainTuple) else self.domain.keys()
        return f'GaussianEnergy {dom}'

Martin Reinecke's avatar
Martin Reinecke committed
304
305

class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
306
307
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
308

Philipp Arras's avatar
Philipp Arras committed
309
    Represents up to an f-independent term :math:`log(d!)`:
310

Philipp Arras's avatar
Philipp Arras committed
311
312
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
313

Philipp Arras's avatar
Philipp Arras committed
314
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
315
    the counts.
Philipp Arras's avatar
Philipp Arras committed
316
317
318
319
320
321

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
322
    """
Philipp Arras's avatar
Philipp Arras committed
323

324
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
325
326
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
327
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
328
            raise ValueError
329
330
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
331

Philipp Arras's avatar
Philipp Arras committed
332
    def apply(self, x):
333
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
334
        res = x.sum() - x.ptw("log").vdot(self._d)
Martin Reinecke's avatar
more    
Martin Reinecke committed
335
        if not x.want_metric:
336
            return res
337
        return res.add_metric(SamplingDtypeSetter(makeOp(1./x.val), np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
338

339

340
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
341
    """Computes the negative log-likelihood of the inverse gamma distribution.
342
343
344

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
345
346
347
348
349
350
351
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
352
353
354
355
356
357
358

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
359
    """
Philipp Arras's avatar
Philipp Arras committed
360

361
362
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
363
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
364
        self._domain = DomainTuple.make(beta.domain)
365
366
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
367
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
368
369
370
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
Philipp Arras's avatar
Philipp Arras committed
371
372
373
374
        if not self._beta.dtype == np.float64:
            # FIXME Add proper complex support for this energy
            raise TypeError
        self._sampling_dtype = _field_to_dtype(self._beta)
375

Philipp Arras's avatar
Philipp Arras committed
376
    def apply(self, x):
377
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
378
        res = x.ptw("log").vdot(self._alphap1) + x.ptw("reciprocal").vdot(self._beta)
Martin Reinecke's avatar
more    
Martin Reinecke committed
379
        if not x.want_metric:
380
            return res
Philipp Arras's avatar
Philipp Arras committed
381
382
        met = makeOp(self._alphap1/(x.val**2))
        if self._sampling_dtype is not None:
383
            met = SamplingDtypeSetter(met, self._sampling_dtype)
Philipp Arras's avatar
Philipp Arras committed
384
        return res.add_metric(met)
385
386


387
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
388
    """Computes likelihood energy corresponding to Student's t-distribution.
389
390

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
391
392
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
393

Philipp Arras's avatar
Philipp Arras committed
394
395
    where f is a field defined on `domain`. Assumes that the data is `float64`
    for sampling.
396
397
398

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
399
400
    domain : `Domain` or `DomainTuple`
        Domain of the operator
Reimar Leike's avatar
Reimar Leike committed
401
    theta : Scalar or Field
402
403
404
        Degree of freedom parameter for the student t distribution
    """

Philipp Arras's avatar
Philipp Arras committed
405
    def __init__(self, domain, theta):
406
407
408
        self._domain = DomainTuple.make(domain)
        self._theta = theta

Philipp Arras's avatar
Philipp Arras committed
409
    def apply(self, x):
410
        self._check_input(x)
411
        res = (((self._theta+1)/2)*(x**2/self._theta).ptw("log1p")).sum()
Martin Reinecke's avatar
more    
Martin Reinecke committed
412
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
413
            return res
414
        met = makeOp((self._theta+1) / (self._theta+3), self.domain)
Philipp Arras's avatar
Philipp Arras committed
415
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
416
417


Martin Reinecke's avatar
Martin Reinecke committed
418
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
419
    """Computes likelihood energy of expected event frequency constrained by
420
421
    event data.

Philipp Arras's avatar
Philipp Arras committed
422
423
424
425
426
427
428
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

429
430
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
431
    d : Field
Philipp Arras's avatar
Philipp Arras committed
432
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
433
    """
Philipp Arras's avatar
Philipp Arras committed
434

435
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
436
437
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
438
        if np.any(np.logical_and(d.val != 0, d.val != 1)):
Philipp Arras's avatar
Philipp Arras committed
439
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
440
        self._d = d
441
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
442

Philipp Arras's avatar
Philipp Arras committed
443
    def apply(self, x):
444
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
445
        res = -x.ptw("log").vdot(self._d) + (1.-x).ptw("log").vdot(self._d-1.)
Martin Reinecke's avatar
more    
Martin Reinecke committed
446
        if not x.want_metric:
Philipp Arras's avatar
Philipp Arras committed
447
            return res
Philipp Arras's avatar
Philipp Arras committed
448
        met = makeOp(1./(x.val*(1. - x.val)))
449
        return res.add_metric(SamplingDtypeSetter(met, np.float64))
Martin Reinecke's avatar
Martin Reinecke committed
450
451


452
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
453
454
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
455

Philipp Arras's avatar
Philipp Arras committed
456
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
457

Philipp Arras's avatar
Philipp Arras committed
458
459
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
460

Martin Reinecke's avatar
Martin Reinecke committed
461
    Other field priors can be represented via transformations of a white
462
463
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
464
    By implementing prior information this way, the field prior is represented
465
466
467
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
468
469
470
471
472
473
474
475
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
476
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
477
        to use to draw Gaussian samples.
Philipp Arras's avatar
Philipp Arras committed
478
479
    prior_dtype : numpy.dtype or dict of numpy.dtype, optional
        Data type of prior used for sampling.
Philipp Arras's avatar
Philipp Arras committed
480
481
482
483
484

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
485
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
486
    """
Philipp Arras's avatar
Philipp Arras committed
487

Philipp Arras's avatar
Philipp Arras committed
488
    def __init__(self, lh, ic_samp=None, _c_inp=None, prior_dtype=np.float64):
Martin Reinecke's avatar
Martin Reinecke committed
489
        self._lh = lh
Philipp Arras's avatar
Philipp Arras committed
490
        self._prior = GaussianEnergy(domain=lh.domain, sampling_dtype=prior_dtype)
491
492
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
493
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
494
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
495

Philipp Arras's avatar
Philipp Arras committed
496
    def apply(self, x):
497
        self._check_input(x)
Martin Reinecke's avatar
more    
Martin Reinecke committed
498
        if not x.want_metric or self._ic_samp is None:
Philipp Arras's avatar
Philipp Arras committed
499
            return (self._lh + self._prior)(x)
Philipp Arras's avatar
Philipp Arras committed
500
501
        lhx, prx = self._lh(x), self._prior(x)
        return (lhx+prx).add_metric(SamplingEnabler(lhx.metric, prx.metric, self._ic_samp))
Martin Reinecke's avatar
Martin Reinecke committed
502

Philipp Arras's avatar
Philipp Arras committed
503
504
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
505
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
506
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
507

508
509
510
511
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)

Martin Reinecke's avatar
Martin Reinecke committed
512

Martin Reinecke's avatar
Martin Reinecke committed
513
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
514
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
515

516
517
518
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
519
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
520
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
521
522
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
523

Philipp Arras's avatar
Docs    
Philipp Arras committed
524
525
526
527
528
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
529

Philipp Arras's avatar
Docs    
Philipp Arras committed
530
531
532
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
533
    """
Martin Reinecke's avatar
Martin Reinecke committed
534
535
536

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
537
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
538
539
        self._res_samples = tuple(res_samples)

Philipp Arras's avatar
Philipp Arras committed
540
    def apply(self, x):
541
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
542
543
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap)/len(self._res_samples)