Commit b0cc236d authored by Theo Steininger's avatar Theo Steininger
Browse files

Improved performance of EnsembleLikelihood

parent 8fde43fb
......@@ -66,18 +66,26 @@ class EnsembleLikelihood(Likelihood):
# and: double conjugate shouldn't make a difference
# u_a_c = c.conjugate().dot(a_u, spaces=1).conjugate()
u_a_c = c.dot(a_u, spaces=1)
u_a_c_val = u_a_c.val.get_full_data()
first_summand = A.inverse_times(c)
# Pure NIFTy is
# u_a_c = c.dot(a_u, spaces=1)
# u_a_c_val = u_a_c.val.get_full_data()
c_weighted_val = c.weight().val.get_full_data()
u_a_c_val = np.einsum(c_weighted_val, [1], a_u_val, [0, 1])
first_summand = A.inverse_times(c)
second_summand_val = np.einsum(middle, [0, 1], u_a_c_val, [1])
second_summand_val = np.einsum(a_u_val, [0, 1],
second_summand_val, [0])
second_summand_val *= -1
second_summand = first_summand.copy_empty()
second_summand.val = second_summand_val
result = c.dot(first_summand - second_summand)
result_1 = c.dot(first_summand)
result_2 = c.dot(second_summand)
result = result_1 + result_2
self.logger.debug("Calculated: %f + %f = %f" %
(result_1, result_2, result))
result_array[i] = result
return -result_array.mean()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment