Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
IMAGINE
Commits
7b47efbb
Commit
7b47efbb
authored
Mar 04, 2017
by
Theo Steininger
Browse files
Improved logging
parent
b0cc236d
Changes
3
Hide whitespace changes
Inline
Side-by-side
imagine/magnetic_fields/magnetic_field/magnetic_field_factory.py
View file @
7b47efbb
...
...
@@ -14,6 +14,7 @@ from magnetic_field import MagneticField
class
MagneticFieldFactory
(
Loggable
,
object
):
def
__init__
(
self
,
box_dimensions
,
resolution
):
self
.
logger
.
debug
(
"Setting up MagneticFieldFactory."
)
self
.
box_dimensions
=
box_dimensions
self
.
resolution
=
resolution
self
.
_parameter_defaults
=
self
.
_initial_parameter_defaults
...
...
@@ -124,5 +125,6 @@ class MagneticFieldFactory(Loggable, object):
domain
=
domain
,
parameters
=
work_parameters
,
distribution_strategy
=
'equal'
)
self
.
logger
.
debug
(
"Generated magnetic field with work-parameters %s"
%
work_parameters
)
return
result_magnetic_field
imagine/observers/hammurapy/hammurapy.py
View file @
7b47efbb
...
...
@@ -144,6 +144,8 @@ class Hammurapy(Observer):
local_length
=
dummy
.
distributor
.
local_length
for
local_ensemble_index
in
xrange
(
local_length
):
self
.
logger
.
debug
(
"Processing local_ensemble_index %i."
%
local_ensemble_index
)
# create a temporary folder
working_directory
=
self
.
_make_temp_folder
()
...
...
@@ -165,130 +167,3 @@ class Hammurapy(Observer):
self
.
_remove_folder
(
working_directory
)
return
observable_dict
###########
# def _make_parameter_file(self, working_directory, resolution, dimensions,
# custom_parameters={}):
#
# # setup the default parameters
# parameters_dict = {'B_field_lx': dimensions[0],
# 'B_field_ly': dimensions[1],
# 'B_field_lz': dimensions[2],
# 'B_field_nx': int(resolution[0]),
# 'B_field_ny': int(resolution[1]),
# 'B_field_nz': int(resolution[2]),
# }
#
# {
# 'do_sync_emission': 'T',
# 'do_rm': 'T',
# 'do_dm': 'F',
# 'do_dust': 'F',
# 'do_tau': 'F',
# 'do_ff': 'F'}
#
# if self.parameters_dict['do_sync_emission'] == 'T':
# obs_sync_file_name = os.path.join(working_directory,
# 'IQU_sync.fits')
# parameters_dict['obs_file_name'] = obs_sync_file_name
#
# if self.parameters_dict['do_rm'] == 'T':
# obs_RM_file_name = os.path.join(working_directory, 'rm.fits')
# parameters_dict['obs_RM_file_name'] = obs_RM_file_name
#
# if self.parameters_dict['do_dm'] == 'T':
# obs_DM_file_name = os.path.join(working_directory,
# 'dm.fits')
# parameters_dict['obs_DM_file_name'] = obs_DM_file_name
#
# if self.parameters_dict['do_dust'] == 'T':
# obs_dust_file_name = os.path.join(working_directory,
# 'IQU_dust.fits')
# parameters_dict['obs_dust_file_name'] = obs_dust_file_name
#
# if self.parameters_dict['do_tau'] == 'T':
# obs_tau_file_name = os.path.join(working_directory,
# 'tau.fits')
# parameters_dict['obs_tau_file_name'] = obs_tau_file_name
#
# if self.parameters_dict['do_ff'] == 'T':
# obs_ff_file_name = os.path.join(working_directory,
# 'free.fits')
# parameters_dict['obs_ff_file_name'] = obs_ff_file_name
#
# # ammend the parameters_dict
# parameters_dict.update(self.parameters_dict)
#
# # add custom parameters
# parameters_dict.update(custom_parameters)
#
# parameters_string = ''
# for item in parameters_dict:
# parameters_string += item + '=' + str(parameters_dict[item]) + '\n'
#
# parameters_file_path = os.path.join(working_directory,
# 'parameters.txt')
# with open(parameters_file_path, 'wb') as config_file:
# config_file.write(parameters_string)
#
#
#
#
# def _build_observables(self, temp_folder):
# observables = {}
# if self.parameters_dict['do_sync_emission'] == 'T':
# [sync_I, sync_Q, sync_U] = self._read_fits_file(temp_folder,
# 'IQU_sync.fits')
# logger.debug('Read the sync_map')
# observables['sync_observable'] = {'sync_I': sync_I,
# 'sync_Q': sync_Q,
# 'sync_U': sync_U}
#
# if self.parameters_dict['do_rm'] == 'T':
# [rm_map] = self._read_fits_file(temp_folder, 'rm.fits')
# logger.debug('Read the rm_map')
# observables['rm_observable'] = {'rm_map': rm_map}
#
# if self.parameters_dict['do_dm'] == 'T':
# [dm_map] = self._read_fits_file(temp_folder, 'dm.fits')
# logger.debug('Read the dm_map')
# observables['dm_observable'] = {'dm_map': dm_map}
#
# if self.parameters_dict['do_dust'] == 'T':
# [dust_I, dust_Q, dust_U] = self._read_fits_file(temp_folder,
# 'IQU_dust.fits')
# logger.debug('Read the dust_map')
# observables['dust_observable'] = {'dust_I': dust_I,
# 'dust_Q': dust_Q,
# 'dust_U': dust_U}
#
# if self.parameters_dict['do_tau'] == 'T':
# [tau_map] = self._read_fits_file(temp_folder, 'tau.fits')
# logger.debug('Read the tau_map')
# observables['tau_observable'] = {'tau_map': tau_map}
#
# if self.parameters_dict['do_ff'] == 'T':
# [ff_map] = self._read_fits_file(temp_folder, 'free.fits')
# logger.debug('Read the ff_map')
# observables['ff_observable'] = {'ff_map': ff_map}
#
# return observables
#
#############
#
# if self.do_sync_emission:
# result_observable['sync_emission'] = \
# Field(domain=(ensemble_space, hp128, FieldArray((3,))))
# if self.do_rm:
# result_observable['rm'] = Field(domain=(ensemble_space, hp128))
# if self.do_dm:
# result_observable['dm'] = Field(domain=(ensemble_space, hp128,))
# if self.do_dust:
# result_observable['dust'] = \
# Field(domain=(ensemble_space, hp128, FieldArray((3,))))
# if self.do_tau:
# result_observable['tau'] = Field(domain=(ensemble_space, hp128,))
# if self.do_ff:
# result_observable['ff'] = Field(domain=(ensemble_space, hp128,))
imagine/pipeline.py
View file @
7b47efbb
...
...
@@ -141,7 +141,7 @@ class Pipeline(Loggable, object):
"rank==0."
)
for
i
in
xrange
(
1
,
size
):
comm
.
send
(
cube_content
,
dest
=
i
,
tag
=
WORK_TAG
)
self
.
logger
.
debug
(
"Sent multinest-cube to
rank %i"
%
i
)
self
.
logger
.
debug
(
"Sent multinest-cube to
nodes with rank > 0."
)
return
self
.
_core_likelihood
(
cube_content
)
...
...
@@ -179,14 +179,15 @@ class Pipeline(Loggable, object):
for
like
in
self
.
likelihood
:
likelihood
+=
like
(
observables
)
self
.
logger
.
debug
(
"Evaluated likelihood: %f"
%
likelihood
)
self
.
logger
.
info
(
"Evaluated likelihood: %f for %s"
%
(
likelihood
,
str
(
cube
)))
return
likelihood
def
__call__
(
self
,
variables
):
if
rank
==
0
:
# kickstart pymultinest
self
.
logger
.
info
(
"
s
tarting pymultinest."
)
self
.
logger
.
info
(
"
S
tarting pymultinest."
)
if
not
os
.
path
.
exists
(
"chains"
):
os
.
mkdir
(
"chains"
)
pymultinest
.
run
(
self
.
_multinest_likelihood
,
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment