hammurapy.py 12.1 KB
Newer Older
1 2 3 4 5
# -*- coding: utf-8 -*-

import abc
import os
import tempfile
6
import subprocess
7 8

import healpy
9
import numpy as np
10

11
from d2o import distributed_data_object
12 13

from imagine.observers.observer import Observer
14
from imagine.magnetic_fields.magnetic_field import MagneticField
15 16


17
class Hammurapy(Observer):
18
    def __init__(self, hammurabi_executable, conf_directory='./confs',
19
                 working_directory_base='.', nside=128):
20 21
        self.hammurabi_executable = os.path.abspath(hammurabi_executable)
        self.conf_directory = os.path.abspath(conf_directory)
22
        self.working_directory_base = os.path.abspath(working_directory_base)
23

24 25
        self.nside = nside

26 27 28
        self.last_call_log = ""

        self.basic_parameters = {'obs_shell_index_numb': '1',
29 30
                                 'total_shell_numb': '3',
                                 'vec_size_R': '500',
31 32 33 34 35 36 37
                                 'max_radius': '35',
                                 'B_field_transform_lon': '-999',
                                 'B_field_transform_lat': '-999',
                                 'TE_grid_filename': 'negrid_n400.bin',
                                 'TE_nx': '400',
                                 'TE_ny': '400',
                                 'TE_nz': '80',
Theo Steininger's avatar
Theo Steininger committed
38
                                 'TE_interp': 'T',
39 40 41 42 43 44
                                 'do_sync_emission': 'F',
                                 'do_rm': 'F',
                                 'do_dm': 'F',
                                 'do_dust': 'F',
                                 'do_tau': 'F',
                                 'do_ff': 'F',
45
                                 }
46 47

    @abc.abstractproperty
48 49
    def magnetic_field_class(self):
        return MagneticField
50 51

    def _make_temp_folder(self):
52
        prefix = os.path.join(self.working_directory_base, 'temp_hammurabi_')
53 54
        return tempfile.mkdtemp(prefix=prefix)

55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def _remove_folder(self, path):
        # Try multiple times in order to overcome 'Directory not empty' errors
        # Hopefully open file handles get closed in the meantime
        n = 0
        while n < 10:
            temp_process = subprocess.Popen(['rm', '-rf', path],
                                            stderr=subprocess.PIPE)
            # wait until process is finished
            errlog = temp_process.communicate()[1]
            # check if there were some errors
            if errlog == '':
                break
        else:
            self.logger.warning('Could not delete %s' % path)
69

70
    def _read_fits_file(self, path, name, nside):
71 72 73 74 75 76 77
        map_path = os.path.join(path, name)
        result_list = []
        i = 0
        while True:
            try:
                loaded_map = healpy.read_map(map_path, verbose=False,
                                             field=i)
78
                loaded_map = healpy.ud_grade(loaded_map, nside_out=nside)
79 80 81 82 83 84 85 86 87 88 89 90 91 92
                result_list += [loaded_map]
                i += 1
            except IndexError:
                break
        return result_list

    def _call_hammurabi(self, path):
        parameters_file_path = os.path.join(path, 'parameters.txt')
        temp_process = subprocess.Popen([self.hammurabi_executable,
                                         parameters_file_path],
                                        stdout=subprocess.PIPE,
                                        cwd=self.conf_directory)
        self.last_call_log = temp_process.communicate()[0]

93 94
    def _initialize_observable_dict(self, observable_dict, magnetic_field):
        pass
95

96 97 98 99 100 101 102 103 104 105 106 107 108
    def _build_parameter_dict(self, parameter_dict, magnetic_field,
                              working_directory, local_ensemble_index):
        grid_space = magnetic_field.domain[1]
        lx, ly, lz = np.array(grid_space.shape)*np.array(grid_space.distances)
        nx, ny, nz = grid_space.shape

        parameter_dict.update({'B_field_lx': lx,
                               'B_field_ly': ly,
                               'B_field_lz': lz,
                               'B_field_nx': nx,
                               'B_field_ny': ny,
                               'B_field_nz': nz,
                               })
109
        parameter_dict.update({'obs_NSIDE': self.nside})
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    def _write_parameter_dict(self, parameter_dict, working_directory):
        parameters_string = ''
        for item in parameter_dict:
            parameters_string += item + '=' + str(parameter_dict[item]) + '\n'

        parameters_file_path = os.path.join(working_directory,
                                            'parameters.txt')
        with open(parameters_file_path, 'wb') as config_file:
            config_file.write(parameters_string)

    def _fill_observable_dict(self, observable_dict, working_directory,
                              ensemble_index):
        return observable_dict

    def __call__(self, magnetic_field):

127 128 129 130
        if not isinstance(magnetic_field, self.magnetic_field_class):
            raise ValueError("Given magnetic field is not a subclass of" +
                             " %s" % str(self.magnetic_field_class))

131 132 133 134 135 136 137 138
        observable_dict = {}
        self._initialize_observable_dict(observable_dict=observable_dict,
                                         magnetic_field=magnetic_field)

        # iterate over ensemble and put result into result_observable
        # get the local shape by creating a dummy d2o
        ensemble_number = magnetic_field.shape[0]
        dummy = distributed_data_object(global_shape=(ensemble_number,),
139 140
                                        distribution_strategy='equal',
                                        dtype=np.float)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

        local_length = dummy.distributor.local_length
        for local_ensemble_index in xrange(local_length):
            # create a temporary folder
            working_directory = self._make_temp_folder()

            # create dictionary for parameter file
            parameter_dict = self.basic_parameters.copy()
            self._build_parameter_dict(
                                    parameter_dict=parameter_dict,
                                    magnetic_field=magnetic_field,
                                    working_directory=working_directory,
                                    local_ensemble_index=local_ensemble_index)

            self._write_parameter_dict(parameter_dict=parameter_dict,
                                       working_directory=working_directory)

            self._call_hammurabi(working_directory)
            self._fill_observable_dict(observable_dict,
                                       working_directory,
                                       local_ensemble_index)
            self._remove_folder(working_directory)

        return observable_dict


###########

#    def _make_parameter_file(self, working_directory, resolution, dimensions,
#                             custom_parameters={}):
#
#        # setup the default parameters
#        parameters_dict = {'B_field_lx': dimensions[0],
#                           'B_field_ly': dimensions[1],
#                           'B_field_lz': dimensions[2],
#                           'B_field_nx': int(resolution[0]),
#                           'B_field_ny': int(resolution[1]),
#                           'B_field_nz': int(resolution[2]),
#                           }
#
#                               {
#                                 'do_sync_emission': 'T',
#                                 'do_rm': 'T',
#                                 'do_dm': 'F',
#                                 'do_dust': 'F',
#                                 'do_tau': 'F',
#                                 'do_ff': 'F'}
#
#        if self.parameters_dict['do_sync_emission'] == 'T':
#            obs_sync_file_name = os.path.join(working_directory,
#                                              'IQU_sync.fits')
#            parameters_dict['obs_file_name'] = obs_sync_file_name
#
#        if self.parameters_dict['do_rm'] == 'T':
#            obs_RM_file_name = os.path.join(working_directory, 'rm.fits')
#            parameters_dict['obs_RM_file_name'] = obs_RM_file_name
#
#        if self.parameters_dict['do_dm'] == 'T':
#            obs_DM_file_name = os.path.join(working_directory,
#                                            'dm.fits')
#            parameters_dict['obs_DM_file_name'] = obs_DM_file_name
#
#        if self.parameters_dict['do_dust'] == 'T':
#            obs_dust_file_name = os.path.join(working_directory,
#                                              'IQU_dust.fits')
#            parameters_dict['obs_dust_file_name'] = obs_dust_file_name
#
#        if self.parameters_dict['do_tau'] == 'T':
#            obs_tau_file_name = os.path.join(working_directory,
#                                             'tau.fits')
#            parameters_dict['obs_tau_file_name'] = obs_tau_file_name
#
#        if self.parameters_dict['do_ff'] == 'T':
#            obs_ff_file_name = os.path.join(working_directory,
#                                            'free.fits')
#            parameters_dict['obs_ff_file_name'] = obs_ff_file_name
#
#        # ammend the parameters_dict
#        parameters_dict.update(self.parameters_dict)
#
#        # add custom parameters
#        parameters_dict.update(custom_parameters)
#
#        parameters_string = ''
#        for item in parameters_dict:
#            parameters_string += item + '=' + str(parameters_dict[item]) + '\n'
#
#        parameters_file_path = os.path.join(working_directory,
#                                            'parameters.txt')
#        with open(parameters_file_path, 'wb') as config_file:
#            config_file.write(parameters_string)
#
#
#
#
#    def _build_observables(self, temp_folder):
#        observables = {}
#        if self.parameters_dict['do_sync_emission'] == 'T':
#            [sync_I, sync_Q, sync_U] = self._read_fits_file(temp_folder,
#                                                            'IQU_sync.fits')
#            logger.debug('Read the sync_map')
#            observables['sync_observable'] = {'sync_I': sync_I,
#                                              'sync_Q': sync_Q,
#                                              'sync_U': sync_U}
#
#        if self.parameters_dict['do_rm'] == 'T':
#            [rm_map] = self._read_fits_file(temp_folder, 'rm.fits')
#            logger.debug('Read the rm_map')
#            observables['rm_observable'] = {'rm_map': rm_map}
#
#        if self.parameters_dict['do_dm'] == 'T':
#            [dm_map] = self._read_fits_file(temp_folder, 'dm.fits')
#            logger.debug('Read the dm_map')
#            observables['dm_observable'] = {'dm_map': dm_map}
#
#        if self.parameters_dict['do_dust'] == 'T':
#            [dust_I, dust_Q, dust_U] = self._read_fits_file(temp_folder,
#                                                            'IQU_dust.fits')
#            logger.debug('Read the dust_map')
#            observables['dust_observable'] = {'dust_I': dust_I,
#                                              'dust_Q': dust_Q,
#                                              'dust_U': dust_U}
#
#        if self.parameters_dict['do_tau'] == 'T':
#            [tau_map] = self._read_fits_file(temp_folder, 'tau.fits')
#            logger.debug('Read the tau_map')
#            observables['tau_observable'] = {'tau_map': tau_map}
#
#        if self.parameters_dict['do_ff'] == 'T':
#            [ff_map] = self._read_fits_file(temp_folder, 'free.fits')
#            logger.debug('Read the ff_map')
#            observables['ff_observable'] = {'ff_map': ff_map}
#
#        return observables
#
#############
#
#        if self.do_sync_emission:
#            result_observable['sync_emission'] = \
#                Field(domain=(ensemble_space, hp128, FieldArray((3,))))
#        if self.do_rm:
#            result_observable['rm'] = Field(domain=(ensemble_space, hp128))
#        if self.do_dm:
#            result_observable['dm'] = Field(domain=(ensemble_space, hp128,))
#        if self.do_dust:
#            result_observable['dust'] = \
#                Field(domain=(ensemble_space, hp128, FieldArray((3,))))
#        if self.do_tau:
#            result_observable['tau'] = Field(domain=(ensemble_space, hp128,))
#        if self.do_ff:
#            result_observable['ff'] = Field(domain=(ensemble_space, hp128,))