ensemble_likelihood.py 2.17 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

Theo Steininger's avatar
Theo Steininger committed
3
4
import numpy as np

5
6
from imagine.likelihoods.likelihood import Likelihood

Theo Steininger's avatar
Theo Steininger committed
7

8
class EnsembleLikelihood(Likelihood):
Theo Steininger's avatar
Theo Steininger committed
9
    def __init__(self, measured_data, data_covariance_operator):
10
        self.measured_data = measured_data
Theo Steininger's avatar
Theo Steininger committed
11
        self.data_covariance_operator = data_covariance_operator
12
13

    def __call__(self, observable):
Theo Steininger's avatar
Theo Steininger committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        # https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula#Generalization
        # B = A^{-1} + U U^dagger
        # A = data_covariance
        # B^{-1} c = (A_inv -
        #             A_inv U (I_k + U^dagger A_inv U)^{-1} U^dagger A_inv) c

        k = observable.shape[0]

        A = self.data_covariance_operator
        obs_val = observable.val.get_full_data()
        obs_mean = observable.mean(spaces=0).val.get_full_data()

        u_val = observable.val.get_full_data() - obs_mean
        U = observable.copy_empty()
        U.val = u_val
        a_u = A.inverse_times(U, spaces=1)

        # build middle-matrix (kxk)
        a_u_val = a_u.val.get_full_data()
        middle = (np.eye(k) +
                  np.einsum(u_val.conjugate(), [0, 1],
                            a_u_val, [2, 1]))
        middle = np.linalg.inv(middle)
        result_array = np.zeros(k)
        for i in xrange(k):
            c = self.measured_data - obs_val[i]

            # assuming that A == A^dagger, this can be shortend
            # a_c = A.inverse_times(c)
            # u_a_c = a_c.dot(U, spaces=1)
            # u_a_c = u_a_c.conjugate()

            # and: double conjugate shouldn't make a difference
            # u_a_c = c.conjugate().dot(a_u, spaces=1).conjugate()
            u_a_c = c.dot(a_u, spaces=1)
            u_a_c_val = u_a_c.val.get_full_data()

            first_summand = A.inverse_times(c)

            second_summand_val = np.einsum(middle, [0, 1], u_a_c_val, [1])
            second_summand_val = np.einsum(a_u_val, [0, 1],
                                           second_summand_val, [0])
            second_summand = first_summand.copy_empty()
            second_summand.val = second_summand_val

            result = c.dot(first_summand - second_summand)
            result_array[i] = result

        return -result_array.mean()