distributed_data_object.py 63.9 KB
Newer Older
Theo Steininger's avatar
Theo Steininger committed
1 2
from __future__ import division
from __future__ import absolute_import
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# D2O
# Copyright (C) 2016  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
theos's avatar
theos committed
20 21

import numpy as np
Theo Steininger's avatar
Theo Steininger committed
22 23
from keepers import Versionable,\
                    Loggable
theos's avatar
theos committed
24 25

from d2o.config import configuration as gc,\
theos's avatar
theos committed
26
                       dependency_injector as gdi
theos's avatar
theos committed
27

Theo Steininger's avatar
Theo Steininger committed
28 29
from .d2o_librarian import d2o_librarian
from .cast_axis_to_tuple import cast_axis_to_tuple
theos's avatar
theos committed
30

Theo Steininger's avatar
Theo Steininger committed
31
from .strategies import STRATEGIES
theos's avatar
theos committed
32 33 34

MPI = gdi[gc['mpi_module']]

theos's avatar
theos committed
35

Theo Steininger's avatar
Theo Steininger committed
36
class distributed_data_object(Loggable, Versionable, object):
theos's avatar
theos committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """A multidimensional array with modular MPI-based distribution schemes.

    The purpose of a distributed_data_object (d2o) is to provide the user
    with a numpy.ndarray like interface while storing the data on an arbitrary
    number of MPI nodes. The logic of a certain distribution strategy is
    implemented by an associated distributor.

    Parameters
    ----------
    global_data : array-like, at least 1-dimensional
        Used with global-type distribution strategies in order to fill the
        d2o with data during initialization.
    global_shape : tuple of ints
        Used with global-type distribution strategies. If no global_data is
        supplied, it will be used.
    dtype : {np.dtype, type}
        Used as the d2o's datatype. Overwrites the data-type of any init data.
    local_data : array-like, at least 1-dimensional
        Used with local-type distribution strategies in order to fill the
        d2o with data during initialization.
    local_shape : tuple of ints
        Used with local-type distribution strategies. If no local_data is
        supplied, local_shape will be used.
    distribution_strategy : optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
    hermitian : boolean
        Specifies if the given init-data is hermitian or not. The
        self.hermitian attribute will be set accordingly.
    alias : String
        Used in order to initialize the d2o from a hdf5 file.
    path : String
        Used in order to initialize the d2o from a hdf5 file. If no path is
        given, '$working_directory/alias' is used.
    comm : mpi4py.MPI.Intracomm
        The MPI communicator on which the d2o lives.
    copy : boolean
        If true it is guaranteed that the input data will be copied. If false
        copying is tried to be avoided.
    *args
        Although not directly used during the init process, further parameters
        are stored in the self.init_args attribute.
    **kwargs
        Additional keyword arguments are passed to the distributor_factory and
        furthermore get stored in the self.init_kwargs attribute.
    skip_parsing : boolean (optional keyword argument)
        If true, the distribution_factory will skip all sanity checks and
        completions of the given (keyword-)arguments. It just uses what it
        gets. Hence the user is fully responsible for supplying complete and
        consistent parameters. This can be used in order to speed up the init
        process. Also see notes section.

    Attributes
    ----------
    data : numpy.ndarray
        The numpy.ndarray in which the individual node's data is stored.
    dtype : type
        Data type of the data object.
    distribution_strategy : string
        Name of the used distribution_strategy.
    distributor : distributor
        The distributor object which takes care of all distribution and
        consolidation of the data.
    shape : tuple of int
        The global shape of the data.
    local_shape : tuple of int
        The nodes individual local shape of the stored data.
    comm : mpi4py.MPI.Intracomm
        The MPI communicator on which the d2o lives.
    hermitian : boolean
        Specfies whether the d2o's data definitely possesses hermitian
        symmetry.
    index : int
        The d2o's registration index it got from the d2o_librarian.
    init_args : list
        Any additional initialization arguments are stored here.
    init_kwargs : dict
        Any additional initialization keyword arguments are stored here.

    Raises
    ------
    ValueError
        Raised if
            * the supplied distribution strategy is not known
            * comm is None
            * different distribution strategies where given on the
              individual nodes
            * different dtypes where given on the individual nodes
            * neither a non-0-dimensional global_data nor global_shape nor
              hdf5 file supplied
            * global_shape == ()
            * different global_shapes where given on the individual nodes
            * neither non-0-dimensional local_data nor local_shape nor
              global d2o supplied
            * local_shape == ()
            * the first entry of local_shape is not the same on all nodes

    Notes
    -----
    The index is the d2o's global unique indentifier. One may use it in order
    to assemble the corresponding local d2o objects on different nodes if
    only one local object on a specific node is given.

    In order to speed up the init process the distributor_factory checks
theos's avatar
theos committed
144
    if the global_configuration object gc yields gc['mpi_init_checks'] == True.
theos's avatar
theos committed
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    If yes, all checks expensive checks are skipped; namely those which  need
    mpi communication. Use this in order to get a fast init speed without
    loosing d2o's init parsing logic.

    Examples
    --------
    >>> a = np.arange(16, dtype=np.float).reshape((4,4))
    >>> obj = distributed_data_object(a, dtype=np.complex)
    >>> obj
    <distributed_data_object>
    array([[  0.+0.j,   1.+0.j,   2.+0.j,   3.+0.j],
           [  4.+0.j,   5.+0.j,   6.+0.j,   7.+0.j],
           [  8.+0.j,   9.+0.j,  10.+0.j,  11.+0.j],
           [ 12.+0.j,  13.+0.j,  14.+0.j,  15.+0.j]])

    See Also
    --------
    distributor
    """

    def __init__(self, global_data=None, global_shape=None, dtype=None,
                 local_data=None, local_shape=None,
                 distribution_strategy=None, hermitian=False,
168
                 alias=None, path=None, comm=getattr(MPI, gc['default_comm']),
theos's avatar
theos committed
169 170 171 172 173 174 175 176 177 178
                 copy=True, *args, **kwargs):

        if isinstance(global_data, tuple) or isinstance(global_data, list):
            global_data = np.array(global_data, copy=False)
        if isinstance(local_data, tuple) or isinstance(local_data, list):
            local_data = np.array(local_data, copy=False)

        if distribution_strategy is None:
            distribution_strategy = gc['default_distribution_strategy']

Theo Steininger's avatar
Theo Steininger committed
179
        from .distributor_factory import distributor_factory
theos's avatar
theos committed
180 181 182 183 184 185 186 187 188 189 190 191
        self.distributor = distributor_factory.get_distributor(
                                distribution_strategy=distribution_strategy,
                                comm=comm,
                                global_data=global_data,
                                global_shape=global_shape,
                                local_data=local_data,
                                local_shape=local_shape,
                                alias=alias,
                                path=path,
                                dtype=dtype,
                                **kwargs)

192
        self.distribution_strategy = self.distributor.distribution_strategy
theos's avatar
theos committed
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
        self.local_shape = self.distributor.local_shape
        self.comm = self.distributor.comm

        self.init_args = args
        self.init_kwargs = kwargs

        (self.data, self.hermitian) = self.distributor.initialize_data(
            global_data=global_data,
            local_data=local_data,
            alias=alias,
            path=path,
            hermitian=hermitian,
            copy=copy)
        self.index = d2o_librarian.register(self)

    @property
    def real(self):
        """ Returns a d2o containing the real part of the d2o's elements.

        Returns
        -------
        out : distributed_data_object
            The output object. The new datatype is the one numpy yields when
            taking the real part on the local data.
        """

        new_data = self.get_local_data(copy=False).real
        new_dtype = new_data.dtype
        new_d2o = self.copy_empty(dtype=new_dtype)
        new_d2o.set_local_data(data=new_data,
                               copy=False,
                               hermitian=self.hermitian)
        return new_d2o

    @property
    def imag(self):
        """ Returns a d2o containing the imaginary part of the d2o's elements.

        Returns
        -------
        out : distributed_data_object
            The output object. The new datatype is the one numpy yields when
            taking the imaginary part on the local data.
        """

        new_data = self.get_local_data(copy=False).imag
        new_dtype = new_data.dtype
        new_d2o = self.copy_empty(dtype=new_dtype)
        new_d2o.set_local_data(data=new_data,
                               copy=False,
                               hermitian=self.hermitian)
        return new_d2o

    @property
    def hermitian(self):
        return self._hermitian

    @hermitian.setter
    def hermitian(self, value):
        self._hermitian = bool(value)

    def _fast_copy_empty(self):
        """ Make a very fast low level copy of the d2o without its data.

        This function is fast, because it uses EmptyD2o - a derived class from
        distributed_data_object and then copies the __dict__ directly. Unlike
        copy_empty, _fast_copy_empty will copy all attributes unchanged.
        """
        # make an empty d2o
        new_copy = EmptyD2o()
        # repair its class
        new_copy.__class__ = self.__class__
        # now copy everthing in the __dict__ except for the data array
Theo Steininger's avatar
Theo Steininger committed
268
        for key, value in list(self.__dict__.items()):
theos's avatar
theos committed
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
            if key != 'data':
                new_copy.__dict__[key] = value
            else:
                new_copy.__dict__[key] = np.empty_like(value)
        # Register the new d2o at the librarian in order to get a unique index
        new_copy.index = d2o_librarian.register(new_copy)
        return new_copy

    def copy(self, dtype=None, distribution_strategy=None, **kwargs):
        """ Returns a full copy of the distributed data object.

        If no keyword arguments are given, the returned object will be an
        identical copy of the original d2o. By explicit specification one is
        able to define the dtype and the distribution_strategy of the returned
        d2o.

        Parameters
        ----------
        dtype : type
            The dtype that the new d2o will have. The data of the primary
            d2o will be casted.
        distribution_strategy : all supported distribution strategies
            The distribution strategy the new d2o should have. If not None and
            different from the original one, there will certainly be inter-node
            communication.
        **kwargs
            Additional keyword arguments get passed to the used copy_empty
            routine.

        Returns
        -------
        out : distributed_data_object
            The output object. It containes the old data, possibly casted to a
            new datatype and distributed according to a new distribution
            strategy

        See Also
        --------
        copy_empty

        """
        temp_d2o = self.copy_empty(dtype=dtype,
                                   distribution_strategy=distribution_strategy,
                                   **kwargs)
        if distribution_strategy is None or \
                distribution_strategy == self.distribution_strategy:
            temp_d2o.set_local_data(self.get_local_data(copy=False), copy=True)
        else:
            temp_d2o.set_full_data(self, hermitian=self.hermitian)
        temp_d2o.hermitian = self.hermitian
        return temp_d2o

    def copy_empty(self, global_shape=None, local_shape=None, dtype=None,
                   distribution_strategy=None, **kwargs):
        """ Returns an empty copy of the distributed data object.

        If no keyword arguments are given, the returned object will be an
        identical copy of the original d2o containing random data. By explicit
        specification one is able to define the new dtype and
        distribution_strategy of the returned d2o and to modify the new shape.

        Parameters
        ----------
        global_shape : tuple of ints
            The global shape that the new d2o shall have. Relevant for
            global-type distribution strategies like 'equal' or 'fftw'.
        local_shape : tuple of ints
            The local shape that the new d2o shall have. Relevant for
            local-type distribution strategies like 'freeform'.
        dtype : type
            The dtype that the new d2o will have.
        distribution_strategy : all supported distribution strategies
            The distribution strategy the new d2o should have.
        **kwargs
            Additional keyword arguments get passed to the init-call if the
            full initialization of a new distributed_data_object is necessary

        Returns
        -------
        out : distributed_data_object
            The output object. It contains random data.

        See Also
        --------
        copy

        """
        if self.distribution_strategy == 'not' and \
                distribution_strategy in STRATEGIES['local'] and \
                local_shape is None:
            result = self.copy_empty(global_shape=global_shape,
                                     local_shape=local_shape,
                                     dtype=dtype,
                                     distribution_strategy='equal',
                                     **kwargs)
            return result.copy_empty(
                distribution_strategy=distribution_strategy)

        if global_shape is None:
            global_shape = self.shape
        if local_shape is None:
            local_shape = self.local_shape
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy

        # check if all parameters remain the same -> use the _fast_copy_empty
        if (global_shape == self.shape and
                local_shape == self.local_shape and
                dtype == self.dtype and
                distribution_strategy == self.distribution_strategy and
                kwargs == self.init_kwargs):
            return self._fast_copy_empty()

        kwargs.update(self.init_kwargs)

        temp_d2o = distributed_data_object(
                                   global_shape=global_shape,
                                   local_shape=local_shape,
                                   dtype=dtype,
                                   distribution_strategy=distribution_strategy,
                                   comm=self.comm,
                                   *self.init_args,
                                   **kwargs)
        return temp_d2o

    def apply_scalar_function(self, function, inplace=False, dtype=None):
        """ Maps a scalar function on each entry of an array.

        The result of the function evaluation may be stored in the original
        array or in a new array (default). Furthermore the dtype of the
        returned array can be specified explicitly if inplace is set to False.

        Parameters
        ----------
        function : callable
            Will be applied to the array's entries. It will be the node's local
            data array into function as a whole. If this fails, the numpy
            vectorize function will be used.
        inplace : boolean
            Specifies if the result of the function evaluation should be stored
            in the original array or not.
        dtype : type
            If inplace is set to False, it is possible to specify the return
            d2o's dtype explicitly.

        Returns
        -------
        out : distributed_data_object
            Resulting d2o. This is either a newly created array or the primary
            d2o itself.
        """
        remember_hermitianQ = self.hermitian

        local_data = self.get_local_data(copy=False)
        try:
            result_data = function(local_data)
        except:
Theo Steininger's avatar
Theo Steininger committed
430
            self.logger.warn("Trying to use np.vectorize!")
431 432
            result_data = np.vectorize(function,
                                       otypes=[local_data.dtype])(local_data)
theos's avatar
theos committed
433

theos's avatar
theos committed
434
        if inplace:
theos's avatar
theos committed
435 436
            result_d2o = self
        else:
theos's avatar
theos committed
437 438 439
            if dtype is None:
                dtype = result_data.dtype
            result_d2o = self.copy_empty(dtype=dtype)
theos's avatar
theos committed
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

        result_d2o.set_local_data(result_data, copy=False)

        if function in (np.exp, np.log):
            result_d2o.hermitian = remember_hermitianQ
        else:
            result_d2o.hermitian = False
        return result_d2o

    def apply_generator(self, generator, copy=False):
        """ Evaluates generator(local_shape) and stores the result locally.

        Parameters
        ----------
        generator : callable
            This function must be able to process the node's local data shape
            and return a numpy.ndarray of this very shape. This array is then
            stored as the local data array on each node.
        copy : boolean
            Specifies whether the self.set_local_data method is instructed to
            copy the result from generator or not.

        Notes
        -----
        The generator function yields node-local results. Therefore it is
        assumed that the resulting overall d2o does not possess hermitian
        symmetry anymore. Therefore self.hermitian is set to False.

        """
        self.set_local_data(generator(self.distributor.local_shape), copy=copy)
        self.hermitian = False

    def __array__(self, dtype=None):
        """ Returns the d2o's full data. """
        return self.get_full_data()

    def __str__(self):
        """ x.__str__() <==> str(x)"""
        return self.data.__str__()

    def __repr__(self):
        """ x.__repr__() <==> repr(x)"""
        return '<distributed_data_object>\n' + self.data.__repr__()

    def _compare_helper(self, other, op):
        """ _compare_helper is used for <, <=, ==, !=, >= and >.

        It checks the class of `other` and then utilizes the appropriate
        methods of self. If `other` is not a scalar, numpy.ndarray or
        distributed_data_object this method will use numpy casting.

        Parameters
        ----------
        other : scalar, numpy.ndarray, distributed_data_object, array_like
            This is the object that will be compared to self.
        op : string
            The name of the comparison function, e.g. '__ne__'.

        Returns
        -------
        result : boolean, distributed_data_object
            If `other` was None, False will be returned. This follows the
            behaviour of numpy but will changed as soon as numpy changed their
            convention. In every other case a distributed_data_object with
            element-wise comparison results will be returned.

        """

        if other is not None:
            result = self.copy_empty(dtype=np.bool_)

        # Case 1: 'other' is a scalar
        # -> make element-wise comparison
        if np.isscalar(other):
            result.set_local_data(
                getattr(self.get_local_data(copy=False), op)(other))
            return result

        # Case 2: 'other' is a numpy array or a distributed_data_object
        # -> extract the local data and make element-wise comparison
        elif isinstance(other, np.ndarray) or\
                isinstance(other, distributed_data_object):
            temp_data = self.distributor.extract_local_data(other)
            result.set_local_data(
                getattr(self.get_local_data(copy=False), op)(temp_data))
            return result

        # Case 3: 'other' is None
        elif other is None:
            return False

        # Case 4: 'other' is something different
        # -> make a numpy casting and make a recursive call
        else:
            temp_other = np.array(other)
            return getattr(self, op)(temp_other)

    def __ne__(self, other):
        """ x.__ne__(y) <==> x != y

        See Also
        --------
        _compare_helper

        """
        return self._compare_helper(other, '__ne__')

    def __lt__(self, other):
        """ x.__lt__(y) <==> x < y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__lt__')

    def __le__(self, other):
        """ x.__le__(y) <==> x <= y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__le__')

    def __eq__(self, other):
        """ x.__eq__(y) <==> x == y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__eq__')

    def __ge__(self, other):
        """ x.__ge__(y) <==> x >= y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__ge__')

    def __gt__(self, other):
        """ x.__gt__(y) <==> x > y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__gt__')

    def __iter__(self):
        """ x.__iter__() <==> iter(x)

        The __iter__ call returns an iterator it got from self.distributor.

        See Also
        --------
        distributor.get_iter

        """
        return self.distributor.get_iter(self)

    def equal(self, other):
        """  Checks if `other` and `self` are structurally the same.

        In contrast to the element-wise comparison with `__eq__`, `equal`
        checks more than only the equality of the array data.
        It checks the equality of
            * shape
            * dtype
            * init_args
            * init_kwargs
            * distribution_strategy
            * node's local data

        Parameters
        ----------
        other : object
            The object that will be compared to `self`.

        Returns
        -------
        result : boolean
            True if above conditions are met, False otherwise.

        """

        if other is None:
            return False
        try:
            assert(self.dtype == other.dtype)
            assert(self.shape == other.shape)
            assert(self.init_args == other.init_args)
            assert(self.init_kwargs == other.init_kwargs)
            assert(self.distribution_strategy == other.distribution_strategy)
            assert(np.all(self.data == other.data))
        except(AssertionError, AttributeError):
            return False
        else:
            return True

    def __pos__(self):
        """ x.__pos__() <==> +x

        Returns a (positive) copy of `self`.
        """

        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(data=self.get_local_data().__pos__(),
                                copy=False)
        return temp_d2o

    def __neg__(self):
        """ x.__neg__() <==> -x

        Returns a negative copy of `self`.
        """

        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(data=self.get_local_data().__neg__(),
                                copy=False)
        return temp_d2o

    def __abs__(self):
        """ x.__abs__() <==> abs(x)

        Returns an absolute valued copy of `self`.
        """

        # translate complex dtypes
        if self.dtype == np.dtype('complex64'):
            new_dtype = np.dtype('float32')
        elif self.dtype == np.dtype('complex128'):
            new_dtype = np.dtype('float64')
        elif issubclass(self.dtype.type, np.complexfloating):
            new_dtype = np.dtype('float')
        else:
            new_dtype = self.dtype
        temp_d2o = self.copy_empty(dtype=new_dtype)
        temp_d2o.set_local_data(data=self.get_local_data().__abs__(),
                                copy=False)
693
        temp_d2o.hermitian = self.hermitian
theos's avatar
theos committed
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
        return temp_d2o

    def _builtin_helper(self, operator, other, inplace=False):
        """ Used for various binary operations like +, -, *, /, **, *=, +=,...

        _builtin_helper checks whether `other` is a scalar or an array and
        based on that extracts the locally relevant data from it. If `self`
        is hermitian, _builtin_helper tries to conserve this flag; but without
        checking hermitianity explicitly.

        Parameters
        ----------
        operator : callable

        other : scalar, array-like

        inplace : boolean
            If the result shall be saved in the data array of `self`. Used for
            +=, -=, etc...
        Returns
        -------
        out : distributed_data_object
            The distributed_data_object containing the computation's result.
            Equals `self` if `inplace is True`.

        """
        # Case 1: other is not a scalar
        if not (np.isscalar(other) or np.shape(other) == (1,)):
            try:
                hermitian_Q = (other.hermitian and self.hermitian)
            except(AttributeError):
                hermitian_Q = False
            # extract the local data from the 'other' object
            input_data = self.distributor.extract_local_data(other)

        # Case 2: other is a scalar
        else:
            # if other is a scalar packed in a d2o, extract its value.
            if isinstance(other, distributed_data_object):
                input_data = other[0]
            else:
                input_data = other

            if np.isrealobj(other):
                hermitian_Q = self.hermitian
            else:
                hermitian_Q = False

        local_data = self.get_local_data(copy=False)

        result_data = getattr(local_data, operator)(input_data)

        # select the return-distributed_data_object
        if inplace is True:
            temp_d2o = self
        else:
            # use common datatype for self and other
            new_dtype = np.dtype(np.find_common_type((self.dtype,),
                                                     (result_data.dtype,)))
            temp_d2o = self.copy_empty(dtype=new_dtype)

        # write the new data into the return-distributed_data_object
        temp_d2o.set_local_data(data=result_data, copy=False)
        temp_d2o.hermitian = hermitian_Q
        return temp_d2o

    def __add__(self, other):
        """ x.__add__(y) <==> x+y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__add__', other)

    def __radd__(self, other):
        """ x.__radd__(y) <==> y+x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__radd__', other)

    def __iadd__(self, other):
        """ x.__iadd__(y) <==> x+=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__iadd__',
                                    other,
                                    inplace=True)

    def __sub__(self, other):
        """ x.__sub__(y) <==> x-y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__sub__', other)

    def __rsub__(self, other):
        """ x.__rsub__(y) <==> y-x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rsub__', other)

    def __isub__(self, other):
        """ x.__isub__(y) <==> x-=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__isub__',
                                    other,
                                    inplace=True)

    def __div__(self, other):
        """ x.__div__(y) <==> x/y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__div__', other)

    def __truediv__(self, other):
        """ x.__truediv__(y) <==> x/y

        See Also
        --------
        _builtin_helper
        """

Theo Steininger's avatar
Theo Steininger committed
842
        return self._builtin_helper('__truediv__', other)
theos's avatar
theos committed
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    def __rdiv__(self, other):
        """ x.__rdiv__(y) <==> y/x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rdiv__', other)

    def __rtruediv__(self, other):
        """ x.__rtruediv__(y) <==> y/x

        See Also
        --------
        _builtin_helper
        """

Theo Steininger's avatar
Theo Steininger committed
862
        return self._builtin_helper('__rtruediv__', other)
theos's avatar
theos committed
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

    def __idiv__(self, other):
        """ x.__idiv__(y) <==> x/=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__idiv__',
                                    other,
                                    inplace=True)

    def __itruediv__(self, other):
        """ x.__itruediv__(y) <==> x/=y

        See Also
        --------
        _builtin_helper
        """

Theo Steininger's avatar
Theo Steininger committed
884 885 886
        return self._builtin_helper('__itruediv__',
                                    other,
                                    inplace=True)
theos's avatar
theos committed
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

    def __floordiv__(self, other):
        """ x.__floordiv__(y) <==> x//y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__floordiv__',
                                    other)

    def __rfloordiv__(self, other):
        """ x.__rfloordiv__(y) <==> y//x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rfloordiv__',
                                    other)

    def __ifloordiv__(self, other):
        """ x.__ifloordiv__(y) <==> x//=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper(
            '__ifloordiv__', other,
            inplace=True)

    def __mul__(self, other):
        """ x.__mul__(y) <==> x*y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__mul__', other)

    def __rmul__(self, other):
        """ x.__rmul__(y) <==> y*x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rmul__', other)

    def __imul__(self, other):
        """ x.__imul__(y) <==> x*=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__imul__',
                                    other,
                                    inplace=True)

    def __pow__(self, other):
        """ x.__pow__(y) <==> x**y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__pow__', other)

    def __rpow__(self, other):
        """ x.__rpow__(y) <==> y**x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rpow__', other)

    def __ipow__(self, other):
        """ x.__ipow__(y) <==> x**=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__ipow__',
                                    other,
                                    inplace=True)

    def __mod__(self, other):
        """ x.__mod__(y) <==> x%y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__mod__', other)

    def __rmod__(self, other):
        """ x.__rmod__(y) <==> y%x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rmod__', other)

    def __imod__(self, other):
        """ x.__imod__(y) <==> x%=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__imod__',
                                    other,
                                    inplace=True)

    def __len__(self):
        """ Returns the length of the first axis."""

        return self.shape[0]

    def get_dim(self):
        """" Returns the total number of entries in the array.

        This is equivalent to the product of the shape.
        """

        return np.prod(self.shape)

    def vdot(self, other):
        """ Returns the numpy.vdot analogous product of two arrays.

        If `self` is a complex array, the complex conjugate of it will be used.
        Internally the numpy.vdot function is used for the d2o's local data,
        and the individual results get MPI-reduced.

        See Also
        --------
        numpy.vdot
        """

        other = self.distributor.extract_local_data(other)
        local_vdot = np.array([np.vdot(self.get_local_data(copy=False),
                                       other)])
        global_vdot = np.empty_like(local_vdot)
        self.distributor._Allreduce_helper(sendbuf=local_vdot,
                                           recvbuf=global_vdot,
                                           op=MPI.SUM)

#        local_vdot = np.vdot(self.get_local_data(), other)
#        local_vdot_list = self.distributor._allgather(local_vdot)
#        global_vdot = np.result_type(self.dtype,
#                                     other.dtype).type(np.sum(local_vdot_list))
        return global_vdot[0]

    def __getitem__(self, key):
        """ x.__getitem__(y) <==> x[y] <==> x.get_data(y) """
        return self.get_data(key)

    def __setitem__(self, key, data):
        """ x.__setitem__(i, y) <==> x[i]=y <==> x.set_data(y, i) """
        self.set_data(data, key)

    def min(self, axis=None, **kwargs):
        """ x.min() <==> x.amin() """
        return self.amin(axis=axis, **kwargs)

    def amin(self, axis=None, **kwargs):
        """ Returns the minimum of an array.

        See Also
        --------
        numpy.amin
        """
        return self.distributor.contraction_helper(
                                                self,
                                                np.amin,
                                                allow_empty_contractions=False,
                                                axis=axis,
                                                **kwargs)

    def nanmin(self, axis=None, **kwargs):
        """ Returns the minimum of an array ignoring all NaNs.

        See Also
        --------
        numpy.nanmin
        """
        return self.distributor.contraction_helper(
                                                self,
                                                np.nanmin,
                                                allow_empty_contractions=False,
                                                axis=axis,
                                                **kwargs)

    def max(self, axis=None, **kwargs):
        """ x.max() <==> x.amax() """
        return self.amax(axis=axis, **kwargs)

    def amax(self, axis=None, **kwargs):
        """ Returns the maximum of an array.

        See Also
        --------
        numpy.amax
        """
        return self.distributor.contraction_helper(
                                                self,
                                                np.amax,
                                                allow_empty_contractions=False,
                                                axis=axis,
                                                **kwargs)

    def nanmax(self, axis=None, **kwargs):
        """ Returns the maximum of an array ignoring all NaNs.

        See Also
        --------
        numpy.nanmax
        """
        return self.distributor.contraction_helper(
                                                self,
                                                np.nanmax,
                                                allow_empty_contractions=False,
                                                axis=axis,
                                                **kwargs)

    def sum(self, axis=None, **kwargs):
        """ Sums the array elements.

        See Also
        --------
        numpy.sum
        """
        return self.distributor.contraction_helper(
                                                self,
                                                np.sum,
                                                allow_empty_contractions=True,
                                                axis=axis,
                                                **kwargs)

    def prod(self, axis=None, **kwargs):
        """ Multiplies the array elements.

        See Also
        --------
        numpy.prod
        """
        return self.distributor.contraction_helper(
                                                self,
                                                np.prod,
                                                allow_empty_contractions=True,
                                                axis=axis,
                                                **kwargs)

    def all(self, axis=None, **kwargs):
        return self.distributor.contraction_helper(
                                                self,
                                                np.all,
                                                allow_empty_contractions=True,
                                                axis=axis,
                                                **kwargs)

    def any(self, axis=None, **kwargs):
        return self.distributor.contraction_helper(
                                                self,
                                                np.any,
                                                allow_empty_contractions=True,
                                                axis=axis,
                                                **kwargs)

    def mean(self, axis=None, **kwargs):
        # infer, which axes will be collapsed
1175
        axis = cast_axis_to_tuple(axis, length=len(self.shape))
theos's avatar
theos committed
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        if axis is None:
            collapsed_shapes = self.shape
        else:
            collapsed_shapes = [self.shape[i] for i in axis]
        # np.prod(()) returns 1.0 which is needed here
        collapsed_dimensions = np.prod(collapsed_shapes)

        result = self.sum(axis=axis, **kwargs)
        # the following may produce division by 0 warnings, but np.mean also
        # does. So, this is by purpose.
        if np.issubdtype(result.dtype, np.integer) or \
           result.dtype == np.dtype('bool'):
            result = result/np.float(collapsed_dimensions)
        else:
            result /= collapsed_dimensions

        return result

    def var(self, axis=None):
        """ Returns the variance of the d2o's elements.

        Internally the formula <x**2> - <x>**2 is used.
        """
        if issubclass(self.dtype.type, np.complexfloating):
            mean_of_the_square = abs(self**2).mean(axis=axis)
            square_of_the_mean = abs(self.mean(axis=axis))**2
        else:
            mean_of_the_square = (self**2).mean(axis=axis)
            square_of_the_mean = self.mean(axis=axis)**2
        return mean_of_the_square - square_of_the_mean

    def std(self, axis=None):
        """ Returns the standard deviation of the d2o's elements. """
        var = self.var(axis=axis)
        if np.isscalar(var):
            return np.sqrt(var)
        else:
            return var.apply_scalar_function(np.sqrt)

    def argmin(self, axis=None):
        """ Returns the (flat) index of the d2o's smallest value.

        See Also:
        argmax, argmin_nonflat, argmax_nonflat
        """

        if 0 in self.shape:
Theo Steininger's avatar
Theo Steininger committed
1223
            raise ValueError("Attempt to get argmin of an empty object")
theos's avatar
theos committed
1224
        if axis is not None:
Theo Steininger's avatar
Theo Steininger committed
1225
            raise NotImplementedError("argmin doesn't support axis keyword")
1226 1227 1228
        if self.shape == ():
            return 0

theos's avatar
theos committed
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
        if 0 in self.local_shape:
            local_argmin = np.nan
            local_argmin_value = np.nan
            globalized_local_argmin = np.nan
        else:
            local_argmin = np.argmin(self.data)
            local_argmin_value = self.data[np.unravel_index(local_argmin,
                                                            self.data.shape)]

            globalized_local_argmin = self.distributor.globalize_flat_index(
                local_argmin)
        local_argmin_list = self.distributor._allgather(
                                                    (local_argmin_value,
                                                     globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[
            ('value', np.dtype('complex128')),
            ('index', np.dtype('float'))])
        local_argmin_list = np.sort(local_argmin_list,
                                    order=['value', 'index'])
        return np.int(local_argmin_list[0][1])

    def argmax(self, axis=None):
        """ Returns the (flat) index of the d2o's biggest value.

        See Also:
        argmin, argmin_nonflat, argmax_nonflat
        """

        if 0 in self.shape:
            raise ValueError(
Theo Steininger's avatar
Theo Steininger committed
1259
                "Attempt to get argmax of an empty object")
theos's avatar
theos committed
1260
        if axis is not None:
Theo Steininger's avatar
Theo Steininger committed
1261
            raise NotImplementedError("argmax doesn't support axis "
theos's avatar
theos committed
1262
                                      "keyword")
1263 1264 1265
        if self.shape == ():
            return 0

theos's avatar
theos committed
1266 1267
        if 0 in self.local_shape:
            local_argmax = np.nan
1268
            local_argmax_value = -np.inf
theos's avatar
theos committed
1269 1270 1271
            globalized_local_argmax = np.nan
        else:
            local_argmax = np.argmax(self.data)
1272 1273 1274 1275 1276 1277 1278
            local_argmax_value = self.data[np.unravel_index(local_argmax,
                                                            self.data.shape)]
            # instead of inverting the sign of local_argmax_value, invert
            # the value of the index. Inverting the former leads to errors
            # when the dtype is unsigned (uint). By inverting the latter
            # we can extract the last entry from the sorted list below
            globalized_local_argmax = -self.distributor.globalize_flat_index(
theos's avatar
theos committed
1279 1280 1281 1282 1283 1284 1285 1286 1287
                local_argmax)
        local_argmax_list = self.distributor._allgather(
                                                  (local_argmax_value,
                                                   globalized_local_argmax))
        local_argmax_list = np.array(local_argmax_list, dtype=[
            ('value', np.dtype('complex128')),
            ('index', np.dtype('float'))])
        local_argmax_list = np.sort(local_argmax_list,
                                    order=['value', 'index'])
1288

1289 1290
        # take the last entry here and correct the minus sign of the index
        return -np.int(local_argmax_list[-1][1])
theos's avatar
theos committed
1291 1292 1293 1294 1295 1296 1297

    def argmin_nonflat(self, axis=None):
        """ Returns the unraveld index of the d2o's smallest value.

        See Also:
        argmin, argmax, argmax_nonflat
        """
1298 1299
        if self.shape == ():
            return (0,)
theos's avatar
theos committed
1300 1301 1302 1303 1304 1305 1306 1307
        return np.unravel_index(self.argmin(axis=axis), self.shape)

    def argmax_nonflat(self, axis=None):
        """ Returns the unraveld index of the d2o's biggest value.

        See Also:
        argmin, argmax, argmin_nonflat
        """
1308 1309
        if self.shape == ():
            return (0,)
theos's avatar
theos committed
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        return np.unravel_index(self.argmax(axis=axis), self.shape)

    def conjugate(self):
        """ Returns the element-wise complex conjugate. """

        temp_d2o = self.copy_empty()
        temp_data = np.conj(self.get_local_data(copy=False))
        temp_d2o.set_local_data(temp_data, copy=False)
        temp_d2o.hermitian = self.hermitian
        return temp_d2o

    def conj(self):
        """ Returns the element-wise complex conjugate.

        This function essentially calls the `d2o.conjugate` method.
        """

        return self.conjugate()

    def median(self, axis=None, **kwargs):
        """ Returns the d2o element's median.

        The median is computed by collecting the full d2o data and then passing
        it to the numpy.median function. Hence this implementation is very
        expensive.
        """

Theo Steininger's avatar
Theo Steininger committed
1337 1338
        self.logger.warn("The current implementation of median is very "
                         "expensive!")
theos's avatar
theos committed
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        median = np.median(self.get_full_data(), axis=axis, **kwargs)
        if np.isscalar(median):
            return median
        else:
            x = self.copy_empty(global_shape=median.shape,
                                dtype=median.dtype,
                                distribution_strategy='not')
            x.set_local_data(median)
            return x

    def _is_helper(self, function):
        """ _is_helper is used for functions like isreal, isinf, isfinite,...

        Parameters
        ----------
        function : callable
            The function that will be applied to the node's local data.

        Returns
        -------
        out : distributed_data_object
            A copy of `self` of datatype boolean containing the result of
            `function(self.data)`.
        """

        temp_d2o = self.copy_empty(dtype=np.dtype('bool'))
        temp_d2o.set_local_data(function(self.data), copy=False)
        return temp_d2o

    def iscomplex(self):
        """ Returns a boolean copy of `self`, where True if element is complex.

        See Also
        --------
        isreal
        """

        return self._is_helper(np.iscomplex)

    def isreal(self):
        """ Returns a boolean copy of `self`, where True if element is real.

        See Also
        --------
        iscomplex
        """

        return self._is_helper(np.isreal)

    def isnan(self):
        """ Returns a boolean copy of `self`, where True if element is NaN.

        See Also
        --------
        isinf
        isfinite
        """

        return self._is_helper(np.isnan)

    def isinf(self):
        """ Returns a boolean copy of `self`, where True if element is +/-inf.

        See Also
        --------
        isnan
        isfinite
        """
        return self._is_helper(np.isinf)

    def isfinite(self):
        """ Returns a boolean copy of `self`, where True if element != +/-inf.

        See Also
        --------
        isnan
        isinf
        """
        return self._is_helper(np.isfinite)

    def nan_to_num(self):
        """ Replace nan with zero and inf with finite numbers.

        Returns a copy of `self` replacing NaN-entries with zero, (positive)
        infinity with a very large number and negative infinity with a very
        small (or negative) number.

        See Also
        --------
        isnan
        isinf
        isfinite
        """
        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(np.nan_to_num(self.get_local_data(copy=False)),
                                copy=False)
        return temp_d2o

    def unique(self):
        """ Returns a `numpy.ndarray` holding the d2o's unique elements. """

        return self.distributor.unique(self.data)

1442
    def bincount(self, weights=None, minlength=None, axis=None):
theos's avatar
theos committed
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        """ Count weighted number of occurrences of each value in the d2o.

        The number of integer bins is `max(self.amax()+1, minlength)`.

        Parameters
        ----------
        weights : optional[array-like]
            An array of the same shape as `self`.
        minlength : optional[int]
            A minimum number of bins for the output array.

        Returns
        -------
        out : numpy.ndarray
            The result of binning `self`. The returned dtype is `int` if
            no weights were given, and `np.float` otherwise.

        Raises
        ------
        TypeError
            If the type of `self` is float or complex.

        See Also
        --------
        numpy.bincount
        """

        if self.dtype not in [np.dtype('int16'), np.dtype('int32'),
                              np.dtype('int64'),  np.dtype('uint16'),
                              np.dtype('uint32'), np.dtype('uint64')]:
Theo Steininger's avatar
Theo Steininger committed
1473 1474
            raise TypeError("Distributed-data-object must be of integer "
                            "datatype!")
theos's avatar
theos committed
1475

1476 1477
        if axis is ():
            return self.copy()
theos's avatar
theos committed
1478

Theo Steininger's avatar
Theo Steininger committed
1479 1480 1481 1482
        if minlength is not None:
            length = max(self.amax() + 1, minlength)
        else:
            length = self.amax() + 1
theos's avatar
theos committed
1483

1484 1485 1486 1487
        return self.distributor.bincount(obj=self,
                                         length=length,
                                         weights=weights,
                                         axis=axis)
theos's avatar
theos committed
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    def where(self):
        """ Return the indices where `self` is True.

        Returns
        -------
        out : list of d2os
            The length of the list equals the number of axes `self` has. The
            elements of the list are d2o's containing the x_i'th coordinate
            of the elments of `self`, which were non-zero.
        """

        return self.distributor.where(self.data)

    def set_local_data(self, data, hermitian=False, copy=True):
        """ Writes data directly to the node's local data array.

        No distribution is done. The shape of the input data must fit the
        local data's shape exactly.

        Parameters
        ----------
        data : array-like
            The data that will be stored in `self.data`. The input data will be
            casted to the d2o's dtype and to C-order.

        hermitian : optional[boolean]
            The d2o's hermitian attribute will be set to this value.

        copy : optional[boolean]
            If False, the copying of `data` will be tried to be avoided. If
            True, it is guaranteed, that `data` will be copied.

        Returns
        -------
        None

        See Also
        --------
        get_local_data
        set_data
        set_full_data
        """

        self.hermitian = hermitian
        casted_data = np.array(data,
                               dtype=self.dtype,
                               copy=False,
                               order='C').reshape(self.local_shape)

        if copy is True:
            self.data[:] = casted_data
        else:
            self.data = casted_data

    def set_data(self, data, to_key, from_key=None, local_keys=False,
                 hermitian=False, copy=True, **kwargs):
        """ Takes the supplied `data` and distributes it to the nodes.

        Essentially this method behaves like `d2o[to_key] = data[from_key]`
        In order to makes this process efficient, the built-in distributors
        do not evaluate the object `d2o[from_key]` explicitly. Instead, the
        individual nodes check for the self-affecting part of `to_key`, then
        compute the corresponding part of `from_key` and extract this
        localized part from `data`.

        By default it is assumed that all nodes got the same `data`-objects:
        either the same integer/list/tuple/ndarray or the individual local
        instance of the same distributed_data_object. Also they assume, that
        the `key` objects are the same on all nodes. In case of d2o's as data-
        and/or key-objects this is important, otherwise MPI-calls from
        different d2os will be mixed and therefore produce randomly wrong
        results or a deadlock. If one likes to use node-individual data- and
        key-objects, the switch `local_keys` must be set to True. Then the
        individual objects will be process one by one and the relevant parts
        transported to the respective nodes.

        Parameters
        ----------
        data : scalar or array-like
            Will be distributed to the individual nodes. If scalar, all entries
            specified by `to_key` will be set this this value.
        to_key : indexing-key like
            Specifies where the data should be stored to. Follows the
            conventions of numpy indexing. Therefore allowed types are
            `integer`, `slice`, `tuple of integers and slices`, `boolean
            array-likes` and `list of index array-like`.
        from_key : optional[indexing-key like]
            The key which specifies the source-data via `data[from_key]`.
        local_keys : optional[boolean]
            Specifies whether all nodes got the same data- and key-objects or
            not. See the descripion above.
        hermitian : optional[boolean]
            The `hermitian` attribute of `self` is set to this value. As the
            default is False, a d2o will lose its potentential hermitianity.
            The behaviour is like that, as a write operation in general
            will violate hermitian symmetry.
        copy : optional[boolean]
            If False, it will be tried to avoid data copying. If True, it is
            guaranteed that `data` will be copied.
        **kwargs
            Additional keyword-arguments are passed to the `disperse_data`
            method of the distributor.

        Returns
        -------
        None

        See Also
        --------
        get_data
        set_local_data
        set_full_data
        d2o_librarian
        """

        self.hermitian = hermitian
        self.distributor.disperse_data(data=self.data,
                                       to_key=to_key,
                                       data_update=data,
                                       from_key=from_key,
                                       local_keys=local_keys,
                                       copy=copy,
                                       **kwargs)

    def set_full_data(self, data, hermitian=False, copy=True, **kwargs):
        """ Distributes `data` among the nodes.

        The shapes of `data` and `self` must match.

        This method behaves similar to set_data(data, to_key=slice(None)), but
        as no slice- and/or indexing-arithmetic must be done it is faster.

        Parameters
        ----------
        data : array-like
            The full data set, that will be written into `self`.
        hermitian : optional[boolean]
            The `hermitian` attribute of `self` is set to this value. As the
            default is False, a d2o will lose its potentential hermitianity.
            The behaviour is like that, as the supplied `data` is not
            guaranteed to have hermitian symmetry.
        copy : optional[boolean]
            If True it is guaranteed that the input data will be copied. If
            False copying is tried to be avoided.
        **kwargs
            Additional keyword-arguments are passed to the distributor's
            `distribute_data` method.

        Returns
        -------
        None

        See Also
        --------
        get_full_data
        set_data
        set_local_data
        """

        self.hermitian = hermitian
        self.data = self.distributor.distribute_data(data=data, copy=copy,
                                                     **kwargs)

    def get_local_data(self, copy=True):
        """ Returns the node's local data array.

        Parameters
        ----------
        copy : optional[boolean]
            If True, a copy of `self.data` is returned, else `self.data`
            itself.

        Returns
        -------
        data : numpy.ndarray
            The node's local data array (or a copy of it).

        See Also
        --------
        set_local_data
        get_data
        get_full_data
        """

        if copy is True:
            return np.copy(self.data)
        if copy is False:
            return self.data

    def get_data(self, key, local_keys=False, **kwargs):
        """ Returns data from the d2o specified by `key`.

        Essentially this method corresponds to `d2o[key]`.

        By default it is assumed that all nodes got the same `key`-objects:
        either the same integer/list/tuple/ndarray or the individual local
        instance of the same distributed_data_object. In order to avoid
        inter-node communication as much as possible, the result is then
        returned as a d2o which contains the node's local part of `d2o[key]`.
        There the distributor decides, which distribution strategy the
        return-d2o should have: in case of slicing distribution strategies,
        the return-d2o will have a 'freeform'-distributor; the
        'not'-distributor will return a 'not'-distributed d2o. If `local-keys`
        is set to True, the return-d2o will be 'freeform'-distributed and
        every node will possess the data which was particularized by its
        local key. Naturally this involves more inter-node
        communication if a node requests some data, that was not located on
        itself.


        Parameters
        ----------
        key : indexing-key like
            Loads data from the region which is specified by key. The data is
            consolidated according to the distribution strategy. If the
            individual nodes get different key-arguments, they get individual
            data.
        local_keys : optional[boolean]
            Specifies whether all nodes got the same key-object or not. See the
            description above.
        **kwargs
            Additional keyword-arguments are passed to the `collect_data`
            method of the distributor.

        Returns
        -------
        out : distributed_data_object
            The d2o containing the data specified by `key`.

        See Also
        --------
        set_data
        get_local_data
        get_full_data
        d2o_librarian
        """

        if key is None:
            return self.copy()
        elif isinstance(key, slice):
            if key == slice(None):
                return self.copy()
        elif isinstance(key, tuple):
            try:
                if all(x == slice(None) for x in key):
                    return self.copy()
            except(ValueError):
                pass

        return self.distributor.collect_data(self.data,
                                             key,
                                             local_keys=local_keys,
                                             **kwargs)

    def get_full_data(self, target_rank='all'):
        """ Consolidates the d2o's data and returns it as a numpy.ndarray.

        This method behaves similar to get_data(key=slice(None)) but is faster
        as no slice- and/or indexing-arithmetic must be done.

        Parameters
        ----------
        target_rank : optional[{'all', int}]
            Specifies if all or only one specific node should recieve the
            result of data consolidation.

        Returns
        -------
        out : numpy.ndarray
            Contains the entire data of the distributed_data_object.

        See Also
        --------
        set_full_data
        get_local_data
        get_data
        """

        return self.distributor.consolidate_data(self.data,
                                                 target_rank=target_rank)

1770 1771 1772 1773
    def get_axes_local_distribution_strategy(self, axes):
        axes = cast_axis_to_tuple(axes, len(self.shape))
        return self.distributor.get_axes_local_distribution_strategy(axes)

theos's avatar
theos committed
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    def flatten(self, inplace=False):
        """ Returns a flat copy of the d2o collapsed into one dimension.

        Copying data will be avoided if possible (regardless of `inplace`).

        Parameters
        ----------
        inplace : optional[boolean]
            If set to True, `self` will be replaced by the result of the
            flattening.

        Returns
        -------
        out : distributed_data_object
            The flatted version of the original distributed_data_object.
        """

        flat_data = self.distributor.flatten(self.data, inplace=inplace)

        flat_global_shape = (np.prod(self.shape),)
        flat_local_shape = np.shape(flat_data)

        # Try to keep the distribution strategy. Therefore
        # create an empty copy of self which has the new shape
        temp_d2o = self.copy_empty(global_shape=flat_global_shape,
                                   local_shape=flat_local_shape)
        # Check if the local shapes match.
        if temp_d2o.local_shape == flat_local_shape:
            work_d2o = temp_d2o
        # if the shapes do not match, create a freeform d2o
        else:
            work_d2o = self.copy_empty(local_shape=flat_local_shape,
                                       distribution_strategy='freeform')

        # Feed the work_d2o with the flat data
        work_d2o.set_local_data(data=flat_data,
                                copy=False)

        if inplace is True:
            self = work_d2o
            return self
        else:
            return work_d2o

    def cumsum(self, axis=None):
        """ Return the cumulative sum of the elements along the given axis.

        Parameters
        ----------
        axis : optional[int]
            Axis along which the cumulative sum is computed. The default (None)
            is to compute the cumsum over the flattened d2o.

        Returns
        -------
        out : distributed_data_object
            Contains the results of the cummulative sum.
        """

        return self.distributor.cumsum(parent=self, axis=axis)

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    def searchsorted(self, v, side='left'):
        """ Find indices where elements should be inserted to maintain order.

        Find the indices into a sorted array `a` such that, if the
        corresponding elements in `v` were inserted before the indices, the
        order of `a` would be preserved.

        Parameters
        ----------
        a : 1-D array_like
            Input array. If `sorter` is None, then it must be sorted in
            ascending order, otherwise `sorter` must be an array of indices
            that sort it.
        v : array_like
            Values to insert into `a`.
        side : {'left', 'right'}, optional
            If 'left', the index of the first suitable location found is given.
            If 'right', return the last such index.  If there is no suitable
            index, return either 0 or N (where N is the length of `a`).

        """

        return self.distributor.searchsorted(obj=self, v=v, side=side)

theos's avatar
theos committed
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    def save(self, alias, path=None, overwriteQ=True):
        """ Saves the distributed_data_object to disk utilizing h5py.

        Parameters
        ----------
        alias : string
            The name for the dataset which is saved within the hdf5 file.

        path : optional[str]
            The path to the hdf5 file. If no path is given, the alias is
            taken as filename in the current working directory.

        overwriteQ : optional[boolean]
            Specifies whether a dataset may be overwritten if it is already
            present in the given hdf5 file or not.
        """

        self.distributor.save_data(self.data, alias, path, overwriteQ)

    def load(self, alias, path=None):
        """ Loads a distributed_data_object from disk utilizing h5py.

        Parameters
        ----------
        alias : string
            The name of the dataset which is loaded from the hdf5 file.

        path : optional[str]
            The path to the hdf5 file. If no path is given, the alias is
            taken as filename in the current path.
        """

        self.data = self.distributor.load_data(alias, path)

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    def _to_hdf5(self, hdf5_group):
        if self.distribution_strategy not in STRATEGIES['global']:
            raise ValueError(
                "Only global-type distributed_data_objects can be versioned.")

        if self.dtype is np.dtype(np.complex256):
            raise AttributeError(
                "Datatype complex256 is not supported by hdf5.")

        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_dataset = hdf5_group.create_dataset('data',
                                                 shape=self.shape,
                                                 dtype=self.dtype)
        self.distributor._data_to_hdf5(hdf5_dataset, self.data)

    @classmethod
    def _from_hdf5(cls, hdf5_group, repository):
1910
        distribution_strategy = str(hdf5_group.attrs['distribution_strategy'])
1911 1912 1913 1914 1915 1916
        dataset = hdf5_group['data']
        result_d2o = distributed_data_object(
                                dataset,
                                distribution_strategy=distribution_strategy)
        return result_d2o

theos's avatar
theos committed
1917 1918 1919 1920

class EmptyD2o(distributed_data_object):
    def __init__(self):
        pass