distributed_data_object.py 60.9 KB
Newer Older
theos's avatar
theos committed
1
2
3
4
5
6
# -*- coding: utf-8 -*-

import numpy as np


from d2o.config import configuration as gc,\
theos's avatar
theos committed
7
                       dependency_injector as gdi
theos's avatar
theos committed
8
9
10
11
12
13
14
15

from d2o_librarian import d2o_librarian
from cast_axis_to_tuple import cast_axis_to_tuple

from strategies import STRATEGIES

MPI = gdi[gc['mpi_module']]

theos's avatar
theos committed
16
about_cstring = lambda z: z
theos's avatar
theos committed
17
from sys import stdout
theos's avatar
theos committed
18
19
20
about_warnings_cprint = lambda z: stdout.write(z + "\n"); stdout.flush()
about_infos_cprint = lambda z: stdout.write(z + "\n"); stdout.flush()

theos's avatar
theos committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

class distributed_data_object(object):
    """A multidimensional array with modular MPI-based distribution schemes.

    The purpose of a distributed_data_object (d2o) is to provide the user
    with a numpy.ndarray like interface while storing the data on an arbitrary
    number of MPI nodes. The logic of a certain distribution strategy is
    implemented by an associated distributor.

    Parameters
    ----------
    global_data : array-like, at least 1-dimensional
        Used with global-type distribution strategies in order to fill the
        d2o with data during initialization.
    global_shape : tuple of ints
        Used with global-type distribution strategies. If no global_data is
        supplied, it will be used.
    dtype : {np.dtype, type}
        Used as the d2o's datatype. Overwrites the data-type of any init data.
    local_data : array-like, at least 1-dimensional
        Used with local-type distribution strategies in order to fill the
        d2o with data during initialization.
    local_shape : tuple of ints
        Used with local-type distribution strategies. If no local_data is
        supplied, local_shape will be used.
    distribution_strategy : optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
    hermitian : boolean
        Specifies if the given init-data is hermitian or not. The
        self.hermitian attribute will be set accordingly.
    alias : String
        Used in order to initialize the d2o from a hdf5 file.
    path : String
        Used in order to initialize the d2o from a hdf5 file. If no path is
        given, '$working_directory/alias' is used.
    comm : mpi4py.MPI.Intracomm
        The MPI communicator on which the d2o lives.
    copy : boolean
        If true it is guaranteed that the input data will be copied. If false
        copying is tried to be avoided.
    *args
        Although not directly used during the init process, further parameters
        are stored in the self.init_args attribute.
    **kwargs
        Additional keyword arguments are passed to the distributor_factory and
        furthermore get stored in the self.init_kwargs attribute.
    skip_parsing : boolean (optional keyword argument)
        If true, the distribution_factory will skip all sanity checks and
        completions of the given (keyword-)arguments. It just uses what it
        gets. Hence the user is fully responsible for supplying complete and
        consistent parameters. This can be used in order to speed up the init
        process. Also see notes section.

    Attributes
    ----------
    data : numpy.ndarray
        The numpy.ndarray in which the individual node's data is stored.
    dtype : type
        Data type of the data object.
    distribution_strategy : string
        Name of the used distribution_strategy.
    distributor : distributor
        The distributor object which takes care of all distribution and
        consolidation of the data.
    shape : tuple of int
        The global shape of the data.
    local_shape : tuple of int
        The nodes individual local shape of the stored data.
    comm : mpi4py.MPI.Intracomm
        The MPI communicator on which the d2o lives.
    hermitian : boolean
        Specfies whether the d2o's data definitely possesses hermitian
        symmetry.
    index : int
        The d2o's registration index it got from the d2o_librarian.
    init_args : list
        Any additional initialization arguments are stored here.
    init_kwargs : dict
        Any additional initialization keyword arguments are stored here.

    Raises
    ------
    ValueError
        Raised if
            * the supplied distribution strategy is not known
            * comm is None
            * different distribution strategies where given on the
              individual nodes
            * different dtypes where given on the individual nodes
            * neither a non-0-dimensional global_data nor global_shape nor
              hdf5 file supplied
            * global_shape == ()
            * different global_shapes where given on the individual nodes
            * neither non-0-dimensional local_data nor local_shape nor
              global d2o supplied
            * local_shape == ()
            * the first entry of local_shape is not the same on all nodes

    Notes
    -----
    The index is the d2o's global unique indentifier. One may use it in order
    to assemble the corresponding local d2o objects on different nodes if
    only one local object on a specific node is given.

    In order to speed up the init process the distributor_factory checks
theos's avatar
theos committed
130
    if the global_configuration object gc yields gc['mpi_init_checks'] == True.
theos's avatar
theos committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    If yes, all checks expensive checks are skipped; namely those which  need
    mpi communication. Use this in order to get a fast init speed without
    loosing d2o's init parsing logic.

    Examples
    --------
    >>> a = np.arange(16, dtype=np.float).reshape((4,4))
    >>> obj = distributed_data_object(a, dtype=np.complex)
    >>> obj
    <distributed_data_object>
    array([[  0.+0.j,   1.+0.j,   2.+0.j,   3.+0.j],
           [  4.+0.j,   5.+0.j,   6.+0.j,   7.+0.j],
           [  8.+0.j,   9.+0.j,  10.+0.j,  11.+0.j],
           [ 12.+0.j,  13.+0.j,  14.+0.j,  15.+0.j]])

    See Also
    --------
    distributor
    """

    def __init__(self, global_data=None, global_shape=None, dtype=None,
                 local_data=None, local_shape=None,
                 distribution_strategy=None, hermitian=False,
                 alias=None, path=None, comm=MPI.COMM_WORLD,
                 copy=True, *args, **kwargs):

        # TODO: allow init with empty shape

        if isinstance(global_data, tuple) or isinstance(global_data, list):
            global_data = np.array(global_data, copy=False)
        if isinstance(local_data, tuple) or isinstance(local_data, list):
            local_data = np.array(local_data, copy=False)

        if distribution_strategy is None:
            distribution_strategy = gc['default_distribution_strategy']

        from distributor_factory import distributor_factory
        self.distributor = distributor_factory.get_distributor(
                                distribution_strategy=distribution_strategy,
                                comm=comm,
                                global_data=global_data,
                                global_shape=global_shape,
                                local_data=local_data,
                                local_shape=local_shape,
                                alias=alias,
                                path=path,
                                dtype=dtype,
                                **kwargs)

        self.distribution_strategy = distribution_strategy
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
        self.local_shape = self.distributor.local_shape
        self.comm = self.distributor.comm

        self.init_args = args
        self.init_kwargs = kwargs

        (self.data, self.hermitian) = self.distributor.initialize_data(
            global_data=global_data,
            local_data=local_data,
            alias=alias,
            path=path,
            hermitian=hermitian,
            copy=copy)
        self.index = d2o_librarian.register(self)

    @property
    def real(self):
        """ Returns a d2o containing the real part of the d2o's elements.

        Returns
        -------
        out : distributed_data_object
            The output object. The new datatype is the one numpy yields when
            taking the real part on the local data.
        """

        new_data = self.get_local_data(copy=False).real
        new_dtype = new_data.dtype
        new_d2o = self.copy_empty(dtype=new_dtype)
        new_d2o.set_local_data(data=new_data,
                               copy=False,
                               hermitian=self.hermitian)
        return new_d2o

    @property
    def imag(self):
        """ Returns a d2o containing the imaginary part of the d2o's elements.

        Returns
        -------
        out : distributed_data_object
            The output object. The new datatype is the one numpy yields when
            taking the imaginary part on the local data.
        """

        new_data = self.get_local_data(copy=False).imag
        new_dtype = new_data.dtype
        new_d2o = self.copy_empty(dtype=new_dtype)
        new_d2o.set_local_data(data=new_data,
                               copy=False,
                               hermitian=self.hermitian)
        return new_d2o

    @property
    def hermitian(self):
        return self._hermitian

    @hermitian.setter
    def hermitian(self, value):
        self._hermitian = bool(value)

    def _fast_copy_empty(self):
        """ Make a very fast low level copy of the d2o without its data.

        This function is fast, because it uses EmptyD2o - a derived class from
        distributed_data_object and then copies the __dict__ directly. Unlike
        copy_empty, _fast_copy_empty will copy all attributes unchanged.
        """
        # make an empty d2o
        new_copy = EmptyD2o()
        # repair its class
        new_copy.__class__ = self.__class__
        # now copy everthing in the __dict__ except for the data array
        for key, value in self.__dict__.items():
            if key != 'data':
                new_copy.__dict__[key] = value
            else:
                new_copy.__dict__[key] = np.empty_like(value)
        # Register the new d2o at the librarian in order to get a unique index
        new_copy.index = d2o_librarian.register(new_copy)
        return new_copy

    def copy(self, dtype=None, distribution_strategy=None, **kwargs):
        """ Returns a full copy of the distributed data object.

        If no keyword arguments are given, the returned object will be an
        identical copy of the original d2o. By explicit specification one is
        able to define the dtype and the distribution_strategy of the returned
        d2o.

        Parameters
        ----------
        dtype : type
            The dtype that the new d2o will have. The data of the primary
            d2o will be casted.
        distribution_strategy : all supported distribution strategies
            The distribution strategy the new d2o should have. If not None and
            different from the original one, there will certainly be inter-node
            communication.
        **kwargs
            Additional keyword arguments get passed to the used copy_empty
            routine.

        Returns
        -------
        out : distributed_data_object
            The output object. It containes the old data, possibly casted to a
            new datatype and distributed according to a new distribution
            strategy

        See Also
        --------
        copy_empty

        """
        temp_d2o = self.copy_empty(dtype=dtype,
                                   distribution_strategy=distribution_strategy,
                                   **kwargs)
        if distribution_strategy is None or \
                distribution_strategy == self.distribution_strategy:
            temp_d2o.set_local_data(self.get_local_data(copy=False), copy=True)
        else:
            temp_d2o.set_full_data(self, hermitian=self.hermitian)
        temp_d2o.hermitian = self.hermitian
        return temp_d2o

    def copy_empty(self, global_shape=None, local_shape=None, dtype=None,
                   distribution_strategy=None, **kwargs):
        """ Returns an empty copy of the distributed data object.

        If no keyword arguments are given, the returned object will be an
        identical copy of the original d2o containing random data. By explicit
        specification one is able to define the new dtype and
        distribution_strategy of the returned d2o and to modify the new shape.

        Parameters
        ----------
        global_shape : tuple of ints
            The global shape that the new d2o shall have. Relevant for
            global-type distribution strategies like 'equal' or 'fftw'.
        local_shape : tuple of ints
            The local shape that the new d2o shall have. Relevant for
            local-type distribution strategies like 'freeform'.
        dtype : type
            The dtype that the new d2o will have.
        distribution_strategy : all supported distribution strategies
            The distribution strategy the new d2o should have.
        **kwargs
            Additional keyword arguments get passed to the init-call if the
            full initialization of a new distributed_data_object is necessary

        Returns
        -------
        out : distributed_data_object
            The output object. It contains random data.

        See Also
        --------
        copy

        """
        if self.distribution_strategy == 'not' and \
                distribution_strategy in STRATEGIES['local'] and \
                local_shape is None:
            result = self.copy_empty(global_shape=global_shape,
                                     local_shape=local_shape,
                                     dtype=dtype,
                                     distribution_strategy='equal',
                                     **kwargs)
            return result.copy_empty(
                distribution_strategy=distribution_strategy)

        if global_shape is None:
            global_shape = self.shape
        if local_shape is None:
            local_shape = self.local_shape
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy

        # check if all parameters remain the same -> use the _fast_copy_empty
        if (global_shape == self.shape and
                local_shape == self.local_shape and
                dtype == self.dtype and
                distribution_strategy == self.distribution_strategy and
                kwargs == self.init_kwargs):
            return self._fast_copy_empty()

        kwargs.update(self.init_kwargs)

        temp_d2o = distributed_data_object(
                                   global_shape=global_shape,
                                   local_shape=local_shape,
                                   dtype=dtype,
                                   distribution_strategy=distribution_strategy,
                                   comm=self.comm,
                                   *self.init_args,
                                   **kwargs)
        return temp_d2o

    def apply_scalar_function(self, function, inplace=False, dtype=None):
        """ Maps a scalar function on each entry of an array.

        The result of the function evaluation may be stored in the original
        array or in a new array (default). Furthermore the dtype of the
        returned array can be specified explicitly if inplace is set to False.

        Parameters
        ----------
        function : callable
            Will be applied to the array's entries. It will be the node's local
            data array into function as a whole. If this fails, the numpy
            vectorize function will be used.
        inplace : boolean
            Specifies if the result of the function evaluation should be stored
            in the original array or not.
        dtype : type
            If inplace is set to False, it is possible to specify the return
            d2o's dtype explicitly.

        Returns
        -------
        out : distributed_data_object
            Resulting d2o. This is either a newly created array or the primary
            d2o itself.
        """
        remember_hermitianQ = self.hermitian

        local_data = self.get_local_data(copy=False)
        try:
            result_data = function(local_data)
        except:
theos's avatar
theos committed
418
            about_warnings_cprint(
theos's avatar
theos committed
419
                "WARNING: Trying to use np.vectorize!")
420
421
            result_data = np.vectorize(function,
                                       otypes=[local_data.dtype])(local_data)
theos's avatar
theos committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

        if inplace is True:
            result_d2o = self
        else:
            result_d2o = self.copy_empty(dtype=result_data.dtype)

        result_d2o.set_local_data(result_data, copy=False)

        if function in (np.exp, np.log):
            result_d2o.hermitian = remember_hermitianQ
        else:
            result_d2o.hermitian = False
        return result_d2o

    def apply_generator(self, generator, copy=False):
        """ Evaluates generator(local_shape) and stores the result locally.

        Parameters
        ----------
        generator : callable
            This function must be able to process the node's local data shape
            and return a numpy.ndarray of this very shape. This array is then
            stored as the local data array on each node.
        copy : boolean
            Specifies whether the self.set_local_data method is instructed to
            copy the result from generator or not.

        Notes
        -----
        The generator function yields node-local results. Therefore it is
        assumed that the resulting overall d2o does not possess hermitian
        symmetry anymore. Therefore self.hermitian is set to False.

        """
        self.set_local_data(generator(self.distributor.local_shape), copy=copy)
        self.hermitian = False

    def __array__(self, dtype=None):
        """ Returns the d2o's full data. """
        return self.get_full_data()

    def __str__(self):
        """ x.__str__() <==> str(x)"""
        return self.data.__str__()

    def __repr__(self):
        """ x.__repr__() <==> repr(x)"""
        return '<distributed_data_object>\n' + self.data.__repr__()

    def _compare_helper(self, other, op):
        """ _compare_helper is used for <, <=, ==, !=, >= and >.

        It checks the class of `other` and then utilizes the appropriate
        methods of self. If `other` is not a scalar, numpy.ndarray or
        distributed_data_object this method will use numpy casting.

        Parameters
        ----------
        other : scalar, numpy.ndarray, distributed_data_object, array_like
            This is the object that will be compared to self.
        op : string
            The name of the comparison function, e.g. '__ne__'.

        Returns
        -------
        result : boolean, distributed_data_object
            If `other` was None, False will be returned. This follows the
            behaviour of numpy but will changed as soon as numpy changed their
            convention. In every other case a distributed_data_object with
            element-wise comparison results will be returned.

        """

        if other is not None:
            result = self.copy_empty(dtype=np.bool_)

        # Case 1: 'other' is a scalar
        # -> make element-wise comparison
        if np.isscalar(other):
            result.set_local_data(
                getattr(self.get_local_data(copy=False), op)(other))
            return result

        # Case 2: 'other' is a numpy array or a distributed_data_object
        # -> extract the local data and make element-wise comparison
        elif isinstance(other, np.ndarray) or\
                isinstance(other, distributed_data_object):
            temp_data = self.distributor.extract_local_data(other)
            result.set_local_data(
                getattr(self.get_local_data(copy=False), op)(temp_data))
            return result

        # Case 3: 'other' is None
        elif other is None:
            return False

        # Case 4: 'other' is something different
        # -> make a numpy casting and make a recursive call
        else:
            temp_other = np.array(other)
            return getattr(self, op)(temp_other)

    def __ne__(self, other):
        """ x.__ne__(y) <==> x != y

        See Also
        --------
        _compare_helper

        """
        return self._compare_helper(other, '__ne__')

    def __lt__(self, other):
        """ x.__lt__(y) <==> x < y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__lt__')

    def __le__(self, other):
        """ x.__le__(y) <==> x <= y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__le__')

    def __eq__(self, other):
        """ x.__eq__(y) <==> x == y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__eq__')

    def __ge__(self, other):
        """ x.__ge__(y) <==> x >= y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__ge__')

    def __gt__(self, other):
        """ x.__gt__(y) <==> x > y

        See Also
        --------
        _compare_helper

        """

        return self._compare_helper(other, '__gt__')

    def __iter__(self):
        """ x.__iter__() <==> iter(x)

        The __iter__ call returns an iterator it got from self.distributor.

        See Also
        --------
        distributor.get_iter

        """
        return self.distributor.get_iter(self)

    def equal(self, other):
        """  Checks if `other` and `self` are structurally the same.

        In contrast to the element-wise comparison with `__eq__`, `equal`
        checks more than only the equality of the array data.
        It checks the equality of
            * shape
            * dtype
            * init_args
            * init_kwargs
            * distribution_strategy
            * node's local data

        Parameters
        ----------
        other : object
            The object that will be compared to `self`.

        Returns
        -------
        result : boolean
            True if above conditions are met, False otherwise.

        """

        if other is None:
            return False
        try:
            assert(self.dtype == other.dtype)
            assert(self.shape == other.shape)
            assert(self.init_args == other.init_args)
            assert(self.init_kwargs == other.init_kwargs)
            assert(self.distribution_strategy == other.distribution_strategy)
            assert(np.all(self.data == other.data))
        except(AssertionError, AttributeError):
            return False
        else:
            return True

    def __pos__(self):
        """ x.__pos__() <==> +x

        Returns a (positive) copy of `self`.
        """

        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(data=self.get_local_data().__pos__(),
                                copy=False)
        return temp_d2o

    def __neg__(self):
        """ x.__neg__() <==> -x

        Returns a negative copy of `self`.
        """

        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(data=self.get_local_data().__neg__(),
                                copy=False)
        return temp_d2o

    def __abs__(self):
        """ x.__abs__() <==> abs(x)

        Returns an absolute valued copy of `self`.
        """

        # translate complex dtypes
        if self.dtype == np.dtype('complex64'):
            new_dtype = np.dtype('float32')
        elif self.dtype == np.dtype('complex128'):
            new_dtype = np.dtype('float64')
        elif issubclass(self.dtype.type, np.complexfloating):
            new_dtype = np.dtype('float')
        else:
            new_dtype = self.dtype
        temp_d2o = self.copy_empty(dtype=new_dtype)
        temp_d2o.set_local_data(data=self.get_local_data().__abs__(),
                                copy=False)
        return temp_d2o

    def _builtin_helper(self, operator, other, inplace=False):
        """ Used for various binary operations like +, -, *, /, **, *=, +=,...

        _builtin_helper checks whether `other` is a scalar or an array and
        based on that extracts the locally relevant data from it. If `self`
        is hermitian, _builtin_helper tries to conserve this flag; but without
        checking hermitianity explicitly.

        Parameters
        ----------
        operator : callable

        other : scalar, array-like

        inplace : boolean
            If the result shall be saved in the data array of `self`. Used for
            +=, -=, etc...
        Returns
        -------
        out : distributed_data_object
            The distributed_data_object containing the computation's result.
            Equals `self` if `inplace is True`.

        """
        # Case 1: other is not a scalar
        if not (np.isscalar(other) or np.shape(other) == (1,)):
            try:
                hermitian_Q = (other.hermitian and self.hermitian)
            except(AttributeError):
                hermitian_Q = False
            # extract the local data from the 'other' object
            input_data = self.distributor.extract_local_data(other)

        # Case 2: other is a scalar
        else:
            # if other is a scalar packed in a d2o, extract its value.
            if isinstance(other, distributed_data_object):
                input_data = other[0]
            else:
                input_data = other

            if np.isrealobj(other):
                hermitian_Q = self.hermitian
            else:
                hermitian_Q = False

        local_data = self.get_local_data(copy=False)

        result_data = getattr(local_data, operator)(input_data)

        # select the return-distributed_data_object
        if inplace is True:
            temp_d2o = self
        else:
            # use common datatype for self and other
            new_dtype = np.dtype(np.find_common_type((self.dtype,),
                                                     (result_data.dtype,)))
            temp_d2o = self.copy_empty(dtype=new_dtype)

        # write the new data into the return-distributed_data_object
        temp_d2o.set_local_data(data=result_data, copy=False)
        temp_d2o.hermitian = hermitian_Q
        return temp_d2o

    def __add__(self, other):
        """ x.__add__(y) <==> x+y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__add__', other)

    def __radd__(self, other):
        """ x.__radd__(y) <==> y+x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__radd__', other)

    def __iadd__(self, other):
        """ x.__iadd__(y) <==> x+=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__iadd__',
                                    other,
                                    inplace=True)

    def __sub__(self, other):
        """ x.__sub__(y) <==> x-y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__sub__', other)

    def __rsub__(self, other):
        """ x.__rsub__(y) <==> y-x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rsub__', other)

    def __isub__(self, other):
        """ x.__isub__(y) <==> x-=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__isub__',
                                    other,
                                    inplace=True)

    def __div__(self, other):
        """ x.__div__(y) <==> x/y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__div__', other)

    def __truediv__(self, other):
        """ x.__truediv__(y) <==> x/y

        See Also
        --------
        _builtin_helper
        """

        return self.__div__(other)

    def __rdiv__(self, other):
        """ x.__rdiv__(y) <==> y/x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rdiv__', other)

    def __rtruediv__(self, other):
        """ x.__rtruediv__(y) <==> y/x

        See Also
        --------
        _builtin_helper
        """

        return self.__rdiv__(other)

    def __idiv__(self, other):
        """ x.__idiv__(y) <==> x/=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__idiv__',
                                    other,
                                    inplace=True)

    def __itruediv__(self, other):
        """ x.__itruediv__(y) <==> x/=y

        See Also
        --------
        _builtin_helper
        """

        return self.__idiv__(other)

    def __floordiv__(self, other):
        """ x.__floordiv__(y) <==> x//y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__floordiv__',
                                    other)

    def __rfloordiv__(self, other):
        """ x.__rfloordiv__(y) <==> y//x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rfloordiv__',
                                    other)

    def __ifloordiv__(self, other):
        """ x.__ifloordiv__(y) <==> x//=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper(
            '__ifloordiv__', other,
            inplace=True)

    def __mul__(self, other):
        """ x.__mul__(y) <==> x*y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__mul__', other)

    def __rmul__(self, other):
        """ x.__rmul__(y) <==> y*x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rmul__', other)

    def __imul__(self, other):
        """ x.__imul__(y) <==> x*=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__imul__',
                                    other,
                                    inplace=True)

    def __pow__(self, other):
        """ x.__pow__(y) <==> x**y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__pow__', other)

    def __rpow__(self, other):
        """ x.__rpow__(y) <==> y**x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rpow__', other)

    def __ipow__(self, other):
        """ x.__ipow__(y) <==> x**=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__ipow__',
                                    other,
                                    inplace=True)

    def __mod__(self, other):
        """ x.__mod__(y) <==> x%y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__mod__', other)

    def __rmod__(self, other):
        """ x.__rmod__(y) <==> y%x

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__rmod__', other)

    def __imod__(self, other):
        """ x.__imod__(y) <==> x%=y

        See Also
        --------
        _builtin_helper
        """

        return self._builtin_helper('__imod__',
                                    other,
                                    inplace=True)
For faster browsing, not all history is shown. View entire blame