__init__.py 64.1 KB
Newer Older
1
2
# Event source for MAGIC calibrated data files.
# Requires uproot package (https://github.com/scikit-hep/uproot).
Moritz Huetten's avatar
Moritz Huetten committed
3
import logging
4
5
6
7

import glob
import re

8
import scipy
9
10
11
12
13
14
import numpy as np
import scipy.interpolate

from astropy import units as u
from astropy.time import Time
from ctapipe.io.eventsource import EventSource
Moritz Huetten's avatar
Moritz Huetten committed
15
from ctapipe.core import Container, Field
16
from ctapipe.io.containers import DataContainer, EventAndMonDataContainer, TelescopePointingContainer, MonitoringCameraContainer, PedestalContainer
17
18
19
20
from ctapipe.instrument import TelescopeDescription, SubarrayDescription, OpticsDescription, CameraGeometry

__all__ = ['MAGICEventSource']

Moritz Huetten's avatar
Moritz Huetten committed
21
logger = logging.getLogger(__name__)
22

Ievgen Vovk's avatar
Ievgen Vovk committed
23

24
25
26
27
28
29
30
31
32
33
34
35
# MAGIC telescope positions in m wrt. to the center of CTA simulations
magic_tel_positions = {
    1: [-27.24, -146.66, 50.00] * u.m,
    2: [-96.44, -96.77, 51.00] * u.m
}
# MAGIC telescope description
optics = OpticsDescription.from_name('MAGIC')
geom = CameraGeometry.from_name('MAGICCam')
magic_tel_description = TelescopeDescription(name='MAGIC', tel_type='MAGIC', optics=optics, camera=geom)
magic_tel_descriptions = {1: magic_tel_description, 2: magic_tel_description}


36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class MAGICEventSource(EventSource):
    """
    EventSource for MAGIC calibrated data.

    This class operates with the MAGIC data run-wise. This means that the files
    corresponding to the same data run are loaded and processed together.
    """
    _count = 0

    def __init__(self, config=None, tool=None, **kwargs):
        """
        Constructor

        Parameters
        ----------
        config: traitlets.loader.Config
            Configuration specified by config file or cmdline arguments.
            Used to set traitlet values.
            Set to None if no configuration to pass.
        tool: ctapipe.core.Tool
            Tool executable that is calling this component.
            Passes the correct logger to the component.
            Set to None if no Tool to pass.
        kwargs: dict
            Additional parameters to be passed.
            NOTE: The file mask of the data to read can be passed with
            the 'input_url' parameter.
        """

        try:
            import uproot
        except ImportError:
            msg = "The `uproot` python module is required to access the MAGIC data"
            self.log.error(msg)
            raise

72
        self.file_list = glob.glob(kwargs['input_url'])
73
74
        if len(self.file_list) == 0:
            raise ValueError("Unreadable or wrong wildcard file path given.")
75
        self.file_list.sort()
76
77
78
79
80

        # EventSource can not handle file wild cards as input_url
        # To overcome this we substitute the input_url with first file matching
        # the specified file mask.
        del kwargs['input_url']
81
        super().__init__(input_url=self.file_list[0], **kwargs)
82
83

        # Retrieving the list of run numbers corresponding to the data files
Moritz Huetten's avatar
Moritz Huetten committed
84
85
        run_info = list(map(self._get_run_info_from_name, self.file_list))
        run_numbers = [i[0] for i in run_info]
86
        is_mc_runs = [i[1] for i in run_info]
Moritz Huetten's avatar
Moritz Huetten committed
87
88

        self.run_numbers, indices = np.unique(run_numbers, return_index=True)
89
90
91
92
93
94
        is_mc_runs = [is_mc_runs[i] for i in indices]
        is_mc_runs = np.unique(is_mc_runs)
        # Checking if runt type (data/MC) is consistent:
        if len(is_mc_runs) > 1:
            raise ValueError("Loaded files contain data and MC runs. Please load only data OR Monte Carlos.")
        self.is_mc = is_mc_runs[0]
95
96
97
98
99

        # # Setting up the current run with the first run present in the data
        # self.current_run = self._set_active_run(run_number=0)
        self.current_run = None

100
        self._subarray_info = SubarrayDescription('MAGIC', magic_tel_positions, magic_tel_descriptions)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    @staticmethod
    def is_compatible(file_mask):
        """
        This method checks if the specified file mask corresponds
        to MAGIC data files. The result will be True only if all
        the files are of ROOT format and contain an 'Events' tree.

        Parameters
        ----------
        file_mask: str
            A file mask to check

        Returns
        -------
        bool:
            True if the masked files are MAGIC data runs, False otherwise.

        """

        is_magic_root_file = True

        file_list = glob.glob(file_mask)

        for file_path in file_list:
            try:
                import uproot

                try:
                    with uproot.open(file_path) as input_data:
                        if 'Events' not in input_data:
                            is_magic_root_file = False
                except ValueError:
                    # uproot raises ValueError if the file is not a ROOT file
                    is_magic_root_file = False
                    pass

            except ImportError:
Ievgen Vovk's avatar
Ievgen Vovk committed
139
                if re.match(r'.+_m\d_.+root', file_path.lower()) is None:
140
141
142
143
144
                    is_magic_root_file = False

        return is_magic_root_file

    @staticmethod
Moritz Huetten's avatar
Moritz Huetten committed
145
    def _get_run_info_from_name(file_name):
146
        """
Moritz Huetten's avatar
Moritz Huetten committed
147
148
        This internal method extracts the run number and 
        type (data/MC) from the specified file name.
149
150
151
152
153
154
155
156
157
158
159
160

        Parameters
        ----------
        file_name: str
            A file name to process.

        Returns
        -------
        int:
            A run number of the file.
        """

Moritz Huetten's avatar
Moritz Huetten committed
161
        mask_data = r".*\d+_M\d+_(\d+)\.\d+_Y_.*"
Moritz Huetten's avatar
Moritz Huetten committed
162
163
164
165
166
167
168
169
170
171
172
        mask_mc = r".*_M\d_za\d+to\d+_\d_(\d+)_Y_.*"
        mask_mc_alt = r".*_M\d_\d_(\d+)_.*"
        if len(re.findall(mask_data, file_name)) > 0:
            parsed_info = re.findall(mask_data, file_name)
            is_mc = False
        elif len(re.findall(mask_mc, file_name)) > 0:
            parsed_info = re.findall(mask_mc, file_name)
            is_mc = True
        else:
            parsed_info = re.findall(mask_mc_alt, file_name)
            is_mc = True
173
174
175
176

        try:
            run_number = int(parsed_info[0])
        except IndexError:
Moritz Huetten's avatar
Moritz Huetten committed
177
            raise IndexError('Can not identify the run number and type (data/MC) of the file {:s}'.format(file_name))
178

Moritz Huetten's avatar
Moritz Huetten committed
179
        return run_number, is_mc
180

Moritz Huetten's avatar
Moritz Huetten committed
181
    def _set_active_run(self, run_number):
182
183
184
185
186
187
188
189
190
191
        """
        This internal method sets the run that will be used for data loading.

        Parameters
        ----------
        run_number: int
            The run number to use.

        Returns
        -------
Moritz Huetten's avatar
Moritz Huetten committed
192
        MarsRun:
Moritz Huetten's avatar
Moritz Huetten committed
193
            The run to use
194
195
196
197
198
199
200
201
        """

        input_path = '/'.join(self.input_url.split('/')[:-1])
        this_run_mask = input_path + '/*{:d}*root'.format(run_number)

        run = dict()
        run['number'] = run_number
        run['read_events'] = 0
Moritz Huetten's avatar
Moritz Huetten committed
202
        run['data'] = MarsRun(run_file_mask=this_run_mask, filter_list=self.file_list)
203
204
205

        return run

206
207
208
209
    @property
    def subarray(self):
        return self._subarray_info

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def _generator(self):
        """
        The default event generator. Return the stereo event
        generator instance.

        Returns
        -------

        """

        return self._stereo_event_generator()

    def _stereo_event_generator(self):
        """
        Stereo event generator. Yields DataContainer instances, filled
        with the read event data.

        Returns
        -------

        """

        counter = 0

        # Data container - is initialized once, and data is replaced within it after each yield
235
236
237
238
        if not self.is_mc:
            data = EventAndMonDataContainer()
        else:
            data = DataContainer()
239
240
241
242
243
244

        # Telescopes with data:
        tels_in_file = ["m1", "m2"]
        tels_with_data = {1, 2}

        # Loop over the available data runs
245
        for run_number in self.run_numbers:
246
247
248
249
250
251

            # Removing the previously read data run from memory
            if self.current_run is not None:
                if 'data' in self.current_run:
                    del self.current_run['data']

Moritz Huetten's avatar
Moritz Huetten committed
252
            # Setting the new active run (class MarsRun object)
Moritz Huetten's avatar
Moritz Huetten committed
253
            self.current_run = self._set_active_run(run_number)
254

255
256
            # Set monitoring data:
            if not self.is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
257

258
                monitoring_data = self.current_run['data'].monitoring_data
Moritz Huetten's avatar
Moritz Huetten committed
259

260
261
262
                for tel_i, tel_id in enumerate(tels_in_file):
                    monitoring_camera = MonitoringCameraContainer()
                    pedestal_info = PedestalContainer()
263
                    badpixel_info = PixelStatusContainer()
Moritz Huetten's avatar
Moritz Huetten committed
264

265
266
267
268
269
270
271
272
273
274
275
                    time_tmp = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalMJD'], scale='utc', format='mjd')
                    pedestal_info.sample_time = Time(time_tmp, format='unix', scale='utc', precision=9)
                    pedestal_info.n_events = 500 # hardcoded number of pedestal events averaged over
                    pedestal_info.charge_mean = []
                    pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean'])
                    pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean'])
                    pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Mean'])
                    pedestal_info.charge_std = []
                    pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms'])
                    pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms'])
                    pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms'])
Moritz Huetten's avatar
Moritz Huetten committed
276

Moritz Huetten's avatar
Moritz Huetten committed
277
278
                    t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoMJDrange'], scale='utc', format='mjd')

279
                    badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo']
Moritz Huetten's avatar
Moritz Huetten committed
280
                    badpixel_info.sample_time_range = t_range
281

282
                    monitoring_camera.pedestal = pedestal_info
283
                    monitoring_camera.pixel_status = badpixel_info
284
285

                    data.mon.tels_with_data = {1, 2}
286
287
                    data.mon.tel[tel_i + 1] = monitoring_camera

288
289
290
291
292
293
294
295
296
            # Loop over the events
            for event_i in range(self.current_run['data'].n_stereo_events):
                # Event and run ids
                event_order_number = self.current_run['data'].stereo_ids[event_i][0]
                event_id = self.current_run['data'].event_data['M1']['stereo_event_number'][event_order_number]
                obs_id = self.current_run['number']

                # Reading event data
                event_data = self.current_run['data'].get_stereo_event_data(event_i)
Moritz Huetten's avatar
Moritz Huetten committed
297
                
298
                data.meta = event_data['mars_meta']
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

                # Event counter
                data.count = counter

                # Setting up the R0 container
                data.r0.obs_id = obs_id
                data.r0.event_id = event_id
                data.r0.tel.clear()

                # Setting up the R1 container
                data.r1.obs_id = obs_id
                data.r1.event_id = event_id
                data.r1.tel.clear()

                # Setting up the DL0 container
                data.dl0.obs_id = obs_id
                data.dl0.event_id = event_id
                data.dl0.tel.clear()

                # Filling the DL1 container with the event data
                for tel_i, tel_id in enumerate(tels_in_file):
                    # Creating the telescope pointing container
                    pointing = TelescopePointingContainer()
322
323
324
325
                    pointing.azimuth = np.deg2rad(event_data['{:s}_pointing_az'.format(tel_id)]) * u.rad
                    pointing.altitude = np.deg2rad(90 - event_data['{:s}_pointing_zd'.format(tel_id)]) * u.rad
                    pointing.ra = np.deg2rad(event_data['{:s}_pointing_ra'.format(tel_id)]) * u.rad
                    pointing.dec = np.deg2rad(event_data['{:s}_pointing_dec'.format(tel_id)]) * u.rad
326
327
328
329

                    # Adding the pointing container to the event data
                    data.pointing[tel_i + 1] = pointing

Moritz Huetten's avatar
Moritz Huetten committed
330
331
332
333
334
                    # Adding trigger id (MAGIC nomenclature)
                    data.r0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number]
                    data.r1.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number]
                    data.dl0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number]

335
336
                    # Adding event charge and peak positions per pixel
                    data.dl1.tel[tel_i + 1].image = event_data['{:s}_image'.format(tel_id)]
Ievgen Vovk's avatar
Ievgen Vovk committed
337
                    data.dl1.tel[tel_i + 1].pulse_time = event_data['{:s}_pulse_time'.format(tel_id)]
Moritz Huetten's avatar
Moritz Huetten committed
338

339
                if self.is_mc == False:
Moritz Huetten's avatar
Moritz Huetten committed
340
341
342
343
344
                    # Adding the event arrival time
                    time_tmp = Time(event_data['mjd'], scale='utc', format='mjd')
                    data.trig.gps_time = Time(time_tmp, format='unix', scale='utc', precision=9)
                else:
                    data.mc.energy = event_data['true_energy'] * u.GeV
345
                    data.mc.alt = (np.pi/2 - event_data['true_zd']) * u.rad
346
                    data.mc.az = -1 * (event_data['true_az'] - np.deg2rad(180 - 7)) * u.rad # check meaning of 7deg transformation (I.Vovk)
Moritz Huetten's avatar
Moritz Huetten committed
347
348
349
350
                    data.mc.shower_primary_id = 1 - event_data['true_shower_primary_id']
                    data.mc.h_first_int = event_data['true_h_first_int'] * u.cm
                    data.mc.core_x = event_data['true_core_x'] * u.cm
                    data.mc.core_y = event_data['true_core_y'] * u.cm
351
352
353
354
355
356

                # Setting the telescopes with data
                data.r0.tels_with_data = tels_with_data
                data.r1.tels_with_data = tels_with_data
                data.dl0.tels_with_data = tels_with_data
                data.trig.tels_with_trigger = tels_with_data
357
                
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

                yield data
                counter += 1

        return

    def _mono_event_generator(self, telescope):
        """
        Mono event generator. Yields DataContainer instances, filled
        with the read event data.

        Parameters
        ----------
        telescope: str
            The telescope for which to return events. Can be either "M1" or "M2".

        Returns
        -------

        """

        counter = 0
        telescope = telescope.upper()

        # Data container - is initialized once, and data is replaced within it after each yield
Moritz Huetten's avatar
Moritz Huetten committed
383
384
385
386
        if not self.is_mc:
            data = EventAndMonDataContainer()
        else:
            data = DataContainer()
387
388
389
390
391
392
393
394
395
396
397

        # Telescopes with data:
        tels_in_file = ["M1", "M2"]

        if telescope not in tels_in_file:
            raise ValueError("Specified telescope {:s} is not in the allowed list {}".format(telescope, tels_in_file))

        tel_i = tels_in_file.index(telescope)
        tels_with_data = {tel_i + 1, }

        # Loop over the available data runs
398
        for run_number in self.run_numbers:
399
400
401
402
403
404
405

            # Removing the previously read data run from memory
            if self.current_run is not None:
                if 'data' in self.current_run:
                    del self.current_run['data']

            # Setting the new active run
Moritz Huetten's avatar
Moritz Huetten committed
406
            self.current_run = self._set_active_run(run_number)
407

Moritz Huetten's avatar
Moritz Huetten committed
408
409
            # Set monitoring data:
            if not self.is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
410

Moritz Huetten's avatar
Moritz Huetten committed
411
                monitoring_data = self.current_run['data'].monitoring_data
Moritz Huetten's avatar
Moritz Huetten committed
412

Moritz Huetten's avatar
Moritz Huetten committed
413
414
415
                monitoring_camera = MonitoringCameraContainer()
                pedestal_info = PedestalContainer()
                badpixel_info = PixelStatusContainer()
Moritz Huetten's avatar
Moritz Huetten committed
416

Moritz Huetten's avatar
Moritz Huetten committed
417
418
419
420
421
422
423
424
425
426
427
                time_tmp = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalMJD'], scale='utc', format='mjd')
                pedestal_info.sample_time = Time(time_tmp, format='unix', scale='utc', precision=9)
                pedestal_info.n_events = 500 # hardcoded number of pedestal events averaged over
                pedestal_info.charge_mean = []
                pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean'])
                pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean'])
                pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Mean'])
                pedestal_info.charge_std = []
                pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms'])
                pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms'])
                pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms'])
Moritz Huetten's avatar
Moritz Huetten committed
428

Moritz Huetten's avatar
Moritz Huetten committed
429
430
431
432
                t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoMJDrange'], scale='utc', format='mjd')

                badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo']
                badpixel_info.sample_time_range = t_range
Moritz Huetten's avatar
Moritz Huetten committed
433

Moritz Huetten's avatar
Moritz Huetten committed
434
435
436
437
438
439
                monitoring_camera.pedestal = pedestal_info
                monitoring_camera.pixel_status = badpixel_info

                data.mon.tels_with_data = tels_with_data
                data.mon.tel[tel_i + 1] = monitoring_camera

440
441
442
443
444
445
446
447
448
449
450
451
452
453
            if telescope == 'M1':
                n_events = self.current_run['data'].n_mono_events_m1
            else:
                n_events = self.current_run['data'].n_mono_events_m2

            # Loop over the events
            for event_i in range(n_events):
                # Event and run ids
                event_order_number = self.current_run['data'].mono_ids[telescope][event_i]
                event_id = self.current_run['data'].event_data[telescope]['stereo_event_number'][event_order_number]
                obs_id = self.current_run['number']

                # Reading event data
                event_data = self.current_run['data'].get_mono_event_data(event_i, telescope=telescope)
Moritz Huetten's avatar
Moritz Huetten committed
454
                
455
                data.meta = event_data['mars_meta']
456
457
458
459
460
461
462
463

                # Event counter
                data.count = counter

                # Setting up the R0 container
                data.r0.obs_id = obs_id
                data.r0.event_id = event_id
                data.r0.tel.clear()
464
                data.r0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number]
465
466
467
468
469

                # Setting up the R1 container
                data.r1.obs_id = obs_id
                data.r1.event_id = event_id
                data.r1.tel.clear()
470
                data.r1.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number]
471
472
473
474
475

                # Setting up the DL0 container
                data.dl0.obs_id = obs_id
                data.dl0.event_id = event_id
                data.dl0.tel.clear()
476
                data.dl0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number]
477
478
479
480
481
482
483
484
485
486
487
488
489

                # Creating the telescope pointing container
                pointing = TelescopePointingContainer()
                pointing.azimuth = np.deg2rad(event_data['pointing_az']) * u.rad
                pointing.altitude = np.deg2rad(90 - event_data['pointing_zd']) * u.rad
                pointing.ra = np.deg2rad(event_data['pointing_ra']) * u.rad
                pointing.dec = np.deg2rad(event_data['pointing_dec']) * u.rad

                # Adding the pointing container to the event data
                data.pointing[tel_i + 1] = pointing

                # Adding event charge and peak positions per pixel
                data.dl1.tel[tel_i + 1].image = event_data['image']
Ievgen Vovk's avatar
Ievgen Vovk committed
490
                data.dl1.tel[tel_i + 1].pulse_time = event_data['pulse_time']
491

492
                if self.is_mc == False:
Moritz Huetten's avatar
Moritz Huetten committed
493
494
495
496
497
                    # Adding the event arrival time
                    time_tmp = Time(event_data['mjd'], scale='utc', format='mjd')
                    data.trig.gps_time = Time(time_tmp, format='unix', scale='utc', precision=9)
                else:
                    data.mc.energy = event_data['true_energy'] * u.GeV
498
                    data.mc.alt = (np.pi/2 - event_data['true_zd']) * u.rad
499
                    data.mc.az = -1 * (event_data['true_az'] - np.deg2rad(180 - 7)) * u.rad # check meaning of 7deg transformation (I.Vovk)
Moritz Huetten's avatar
Moritz Huetten committed
500
501
502
503
                    data.mc.shower_primary_id = 1 - event_data['true_shower_primary_id']
                    data.mc.h_first_int = event_data['true_h_first_int'] * u.cm
                    data.mc.core_x = event_data['true_core_x'] * u.cm
                    data.mc.core_y = event_data['true_core_y'] * u.cm
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

                # Setting the telescopes with data
                data.r0.tels_with_data = tels_with_data
                data.r1.tels_with_data = tels_with_data
                data.dl0.tels_with_data = tels_with_data
                data.trig.tels_with_trigger = tels_with_data

                yield data
                counter += 1

        return

    def _pedestal_event_generator(self, telescope):
        """
        Pedestal event generator. Yields DataContainer instances, filled
        with the read event data.

        Parameters
        ----------
        telescope: str
            The telescope for which to return events. Can be either "M1" or "M2".

        Returns
        -------

        """

        counter = 0
        telescope = telescope.upper()

        # Data container - is initialized once, and data is replaced within it after each yield
Moritz Huetten's avatar
Moritz Huetten committed
535
        data = EventAndMonDataContainer()
536
537
538
539
540
541
542
543
544
545
546

        # Telescopes with data:
        tels_in_file = ["M1", "M2"]

        if telescope not in tels_in_file:
            raise ValueError("Specified telescope {:s} is not in the allowed list {}".format(telescope, tels_in_file))

        tel_i = tels_in_file.index(telescope)
        tels_with_data = {tel_i + 1, }

        # Loop over the available data runs
547
        for run_number in self.run_numbers:
548
549
550
551
552
553
554

            # Removing the previously read data run from memory
            if self.current_run is not None:
                if 'data' in self.current_run:
                    del self.current_run['data']

            # Setting the new active run
Moritz Huetten's avatar
Moritz Huetten committed
555
            self.current_run = self._set_active_run(run_number)
556

Moritz Huetten's avatar
Moritz Huetten committed
557
            monitoring_data = self.current_run['data'].monitoring_data
Moritz Huetten's avatar
Moritz Huetten committed
558

Moritz Huetten's avatar
Moritz Huetten committed
559
560
561
            monitoring_camera = MonitoringCameraContainer()
            pedestal_info = PedestalContainer()
            badpixel_info = PixelStatusContainer()
Moritz Huetten's avatar
Moritz Huetten committed
562

Moritz Huetten's avatar
Moritz Huetten committed
563
564
565
566
567
568
569
570
571
572
573
            time_tmp = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalMJD'], scale='utc', format='mjd')
            pedestal_info.sample_time = Time(time_tmp, format='unix', scale='utc', precision=9)
            pedestal_info.n_events = 500 # hardcoded number of pedestal events averaged over
            pedestal_info.charge_mean = []
            pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean'])
            pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean'])
            pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Mean'])
            pedestal_info.charge_std = []
            pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms'])
            pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms'])
            pedestal_info.charge_std.append(monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms'])
Moritz Huetten's avatar
Moritz Huetten committed
574

Moritz Huetten's avatar
Moritz Huetten committed
575
576
577
578
            t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoMJDrange'], scale='utc', format='mjd')

            badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo']
            badpixel_info.sample_time_range = t_range
Moritz Huetten's avatar
Moritz Huetten committed
579

Moritz Huetten's avatar
Moritz Huetten committed
580
581
582
583
584
585
            monitoring_camera.pedestal = pedestal_info
            monitoring_camera.pixel_status = badpixel_info

            data.mon.tels_with_data = tels_with_data
            data.mon.tel[tel_i + 1] = monitoring_camera

586
587
588
589
590
591
592
593
594
595
596
597
598
599
            if telescope == 'M1':
                n_events = self.current_run['data'].n_pedestal_events_m1
            else:
                n_events = self.current_run['data'].n_pedestal_events_m2

            # Loop over the events
            for event_i in range(n_events):
                # Event and run ids
                event_order_number = self.current_run['data'].pedestal_ids[telescope][event_i]
                event_id = self.current_run['data'].event_data[telescope]['stereo_event_number'][event_order_number]
                obs_id = self.current_run['number']

                # Reading event data
                event_data = self.current_run['data'].get_pedestal_event_data(event_i, telescope=telescope)
Moritz Huetten's avatar
Moritz Huetten committed
600
                
601
                data.meta = event_data['mars_meta']
602
603
604
605
606
607
608
609

                # Event counter
                data.count = counter

                # Setting up the R0 container
                data.r0.obs_id = obs_id
                data.r0.event_id = event_id
                data.r0.tel.clear()
610
                data.r0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number]
611
612
613
614
615

                # Setting up the R1 container
                data.r1.obs_id = obs_id
                data.r1.event_id = event_id
                data.r1.tel.clear()
616
                data.r1.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number]
617
618
619
620
621

                # Setting up the DL0 container
                data.dl0.obs_id = obs_id
                data.dl0.event_id = event_id
                data.dl0.tel.clear()
622
                data.dl0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number]
623
624
625
626
627
628
629
630
631
632
633
634
635

                # Creating the telescope pointing container
                pointing = TelescopePointingContainer()
                pointing.azimuth = np.deg2rad(event_data['pointing_az']) * u.rad
                pointing.altitude = np.deg2rad(90 - event_data['pointing_zd']) * u.rad
                pointing.ra = np.deg2rad(event_data['pointing_ra']) * u.rad
                pointing.dec = np.deg2rad(event_data['pointing_dec']) * u.rad

                # Adding the pointing container to the event data
                data.pointing[tel_i + 1] = pointing

                # Adding event charge and peak positions per pixel
                data.dl1.tel[tel_i + 1].image = event_data['image']
Ievgen Vovk's avatar
Ievgen Vovk committed
636
                data.dl1.tel[tel_i + 1].pulse_time = event_data['pulse_time']
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

                # Adding the event arrival time
                time_tmp = Time(event_data['mjd'], scale='utc', format='mjd')
                data.trig.gps_time = Time(time_tmp, format='unix', scale='utc', precision=9)

                # Setting the telescopes with data
                data.r0.tels_with_data = tels_with_data
                data.r1.tels_with_data = tels_with_data
                data.dl0.tels_with_data = tels_with_data
                data.trig.tels_with_trigger = tels_with_data

                yield data
                counter += 1

        return


Moritz Huetten's avatar
Moritz Huetten committed
654
class MarsRun:
655
656
657
658
    """
    This class implements reading of the event data from a single MAGIC data run.
    """

Moritz Huetten's avatar
Moritz Huetten committed
659
    def __init__(self, run_file_mask, filter_list=None):
660
661
662
663
664
665
666
667
668
        """
        Constructor of the class. Defines the run to use and the camera pixel arrangement.

        Parameters
        ----------
        run_file_mask: str
            A path mask for files belonging to the run. Must correspond to a single run
            or an exception will be raised. Must correspond to calibrated ("sorcerer"-level)
            data.
669
670
671
        filter_list: list, optional
            A list of files, to which the run_file_mask should be applied. If None, all the
            files satisfying run_file_mask will be used. Defaults to None.
672
673
        """

674
        self.n_camera_pixels = geom.n_pixels
675

676
677
678
679
        self.run_file_mask = run_file_mask

        # Preparing the lists of M1/2 data files
        file_list = glob.glob(run_file_mask)
680
681
682
683
684

        # Filtering out extra files if necessary
        if filter_list is not None:
            file_list = list(set(file_list) & set(filter_list))

685
686
        self.m1_file_list = list(filter(lambda name: '_M1_' in name, file_list))
        self.m2_file_list = list(filter(lambda name: '_M2_' in name, file_list))
687
        self.m1_file_list.sort()
688
689
690
        self.m2_file_list.sort()

        # Retrieving the list of run numbers corresponding to the data files
Moritz Huetten's avatar
Moritz Huetten committed
691
692
        run_info = list(map(MAGICEventSource._get_run_info_from_name, file_list))
        run_numbers = [i[0] for i in run_info]
693
694
695
696
697
698
699
700
701
        is_mc_runs   = [i[1] for i in run_info]

        run_numbers = np.unique(run_numbers)
        is_mc_runs = np.unique(is_mc_runs)
        # Checking if runt type (data/MC) is consistent:
        if len(is_mc_runs) > 1:
            raise ValueError("Run type is not consistently data or MC: {}".format(is_mc))
        
        self.is_mc = is_mc_runs[0]
702
703
704
705
706

        # Checking if a single run is going to be read
        if len(run_numbers) > 1:
            raise ValueError("Run mask corresponds to more than one run: {}".format(run_numbers))

707
708
709
710
711
        # Reading the data
        m1_data = self.load_events(self.m1_file_list, self.is_mc, self.n_camera_pixels)
        m2_data = self.load_events(self.m2_file_list, self.is_mc, self.n_camera_pixels)
        
        # Getting the event data
712
        self.event_data = dict()
713
714
715
716
717
718
719
        self.event_data['M1'] = m1_data[0]
        self.event_data['M2'] = m2_data[0]

        # Getting the monitoring data
        self.monitoring_data = dict()
        self.monitoring_data['M1'] = m1_data[1]
        self.monitoring_data['M2'] = m2_data[1]
720
721
722
723
724
725
726
727

        # Detecting pedestal events
        self.pedestal_ids = self._find_pedestal_events()
        # Detecting stereo events
        self.stereo_ids = self._find_stereo_events()
        # Detecting mono events
        self.mono_ids = self._find_mono_events()

728

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    @property
    def n_events_m1(self):
        return len(self.event_data['M1']['MJD'])

    @property
    def n_events_m2(self):
        return len(self.event_data['M2']['MJD'])

    @property
    def n_stereo_events(self):
        return len(self.stereo_ids)

    @property
    def n_mono_events_m1(self):
        return len(self.mono_ids['M1'])

    @property
    def n_mono_events_m2(self):
        return len(self.mono_ids['M2'])

    @property
    def n_pedestal_events_m1(self):
        return len(self.pedestal_ids['M1'])

    @property
    def n_pedestal_events_m2(self):
        return len(self.pedestal_ids['M2'])

    @staticmethod
758
    def load_events(file_list, is_mc, n_camera_pixels):
759
        """
760
        This method loads events and monitoring data from the pre-defiled file and returns them as a dictionary.
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

        Parameters
        ----------
        file_name: str
            Name of the MAGIC calibrated file to use.

        Returns
        -------
        dict:
            A dictionary with the even properties: charge / arrival time data, trigger, direction etc.
        """

        try:
            import uproot
        except ImportError:
            msg = "The `uproot` python module is required to access the MAGIC data"
            raise ImportError(msg)

        event_data = dict()

        event_data['charge'] = []
        event_data['arrival_time'] = []
783
784
        event_data['trigger_pattern'] = scipy.array([], dtype=np.int32)
        event_data['stereo_event_number'] = scipy.array([], dtype=np.int32)
785
786
787
788
789
        event_data['pointing_zd'] = scipy.array([])
        event_data['pointing_az'] = scipy.array([])
        event_data['pointing_ra'] = scipy.array([])
        event_data['pointing_dec'] = scipy.array([])
        event_data['MJD'] = scipy.array([])
Moritz Huetten's avatar
Moritz Huetten committed
790
        event_data['mars_meta'] = []
791

792
793
        # monitoring information (updated from time to time)
        monitoring_data = dict()
794
        
Moritz Huetten's avatar
Moritz Huetten committed
795
796
        monitoring_data['badpixelinfo'] = []
        monitoring_data['badpixelinfoMJDrange'] = []
797
798
799
800
801
802
803
804
805
806
807
        monitoring_data['PedestalMJD'] = scipy.array([])
        monitoring_data['PedestalFundamental'] = dict()
        monitoring_data['PedestalFundamental']['Mean'] = []
        monitoring_data['PedestalFundamental']['Rms'] = []
        monitoring_data['PedestalFromExtractor'] = dict()
        monitoring_data['PedestalFromExtractor']['Mean'] = []
        monitoring_data['PedestalFromExtractor']['Rms'] = []
        monitoring_data['PedestalFromExtractorRndm'] = dict()
        monitoring_data['PedestalFromExtractorRndm']['Mean'] = []
        monitoring_data['PedestalFromExtractorRndm']['Rms'] = []

808
809
        event_data['file_edges'] = [0]

810
811
812
813
        degrees_per_hour = 15.0
        seconds_per_day = 86400.0
        seconds_per_hour = 3600.

Moritz Huetten's avatar
Moritz Huetten committed
814
        evt_common_list = [
815
            'MCerPhotEvt.fPixels.fPhot', 
Moritz Huetten's avatar
Moritz Huetten committed
816
817
            'MArrivalTime.fData',
            'MTriggerPattern.fPrescaled',
818
            'MRawEvtHeader.fStereoEvtNumber', 
Moritz Huetten's avatar
Moritz Huetten committed
819
820
            'MRawEvtHeader.fDAQEvtNumber',
            ]
821
        
Moritz Huetten's avatar
Moritz Huetten committed
822
823
824
825
826
827
828
829
830
831
832
833
        # Separately, because only used with pre-processed MARS data 
        # to create MPointingPos container
        pointing_array_list = [
            'MPointingPos.fZd', 
            'MPointingPos.fAz', 
            'MPointingPos.fRa', 
            'MPointingPos.fDec', 
            'MPointingPos.fDevZd',
            'MPointingPos.fDevAz', 
            'MPointingPos.fDevHa', 
            'MPointingPos.fDevDec',
            ]
834
        
Moritz Huetten's avatar
Moritz Huetten committed
835
836
837
838
839
840
        # Info only applicable for data:
        time_array_list = [
            'MTime.fMjd',
            'MTime.fTime.fMilliSec',
            'MTime.fNanoSec', 
            ]
Moritz Huetten's avatar
Moritz Huetten committed
841
        
Moritz Huetten's avatar
Moritz Huetten committed
842
843
844
845
846
847
848
849
        drive_array_list = [
            'MReportDrive.fMjd',
            'MReportDrive.fCurrentZd',
            'MReportDrive.fCurrentAz',
            'MReportDrive.fRa',
            'MReportDrive.fDec'
            ]

850
851
852
853
854
855
856
857
858
859
860
861
        pedestal_array_list = [
            'MTimePedestals.fMjd',
            'MTimePedestals.fTime.fMilliSec',
            'MTimePedestals.fNanoSec',
            'MPedPhotFundamental.fArray.fMean',
            'MPedPhotFundamental.fArray.fRms',
            'MPedPhotFromExtractor.fArray.fMean',
            'MPedPhotFromExtractor.fArray.fRms',
            'MPedPhotFromExtractorRndm.fArray.fMean',
            'MPedPhotFromExtractorRndm.fArray.fRms'
            ]

Moritz Huetten's avatar
Moritz Huetten committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
        # Info only applicable for MC:
        mc_list = [
            'MMcEvt.fEnergy',
            'MMcEvt.fTheta',
            'MMcEvt.fPhi',
            'MMcEvt.fPartId',
            'MMcEvt.fZFirstInteraction',
            'MMcEvt.fCoreX',
            'MMcEvt.fCoreY', 
            ]

        # Metadata, currently not strictly required
        metainfo_array_list = [
            'MRawRunHeader.fRunNumber',
            'MRawRunHeader.fRunType',
            'MRawRunHeader.fSubRunIndex',
            'MRawRunHeader.fSourceRA',
            'MRawRunHeader.fSourceDEC',
            'MRawRunHeader.fTelescopeNumber']
881

882
883
884
885
        for file_name in file_list:

            input_file = uproot.open(file_name)

Moritz Huetten's avatar
Moritz Huetten committed
886
            events = input_file['Events'].arrays(evt_common_list)
887

888
            # Reading the info common to MC and real data
889
890
891
892
            charge = events[b'MCerPhotEvt.fPixels.fPhot']
            arrival_time = events[b'MArrivalTime.fData']
            trigger_pattern = events[b'MTriggerPattern.fPrescaled']
            stereo_event_number = events[b'MRawEvtHeader.fStereoEvtNumber']
893

Moritz Huetten's avatar
Moritz Huetten committed
894
895
            # Reading run-wise meta information (same for all events in subrun):
            mars_meta = dict()
Moritz Huetten's avatar
Moritz Huetten committed
896

Moritz Huetten's avatar
Moritz Huetten committed
897
            mars_meta['is_simulation'] = is_mc
Moritz Huetten's avatar
Moritz Huetten committed
898

Moritz Huetten's avatar
Moritz Huetten committed
899
900
901
902
903
904
905
906
            # Reading event timing information:
            if not is_mc:
                event_times = input_file['Events'].arrays(time_array_list)
                # Computing the event arrival time
                
                event_mjd = event_times[b'MTime.fMjd']
                event_millisec = event_times[b'MTime.fTime.fMilliSec']
                event_nanosec = event_times[b'MTime.fNanoSec']
Moritz Huetten's avatar
Moritz Huetten committed
907

Moritz Huetten's avatar
Moritz Huetten committed
908
909
910
                event_mjd = event_mjd + (event_millisec / 1e3 + event_nanosec / 1e9) / seconds_per_day
                event_data['MJD'] = scipy.concatenate((event_data['MJD'], event_mjd))

Moritz Huetten's avatar
Moritz Huetten committed
911
            # try to read RunHeaders tree (soft fail if not present, to pass current tests)
Moritz Huetten's avatar
Moritz Huetten committed
912
913
914
915
916
            try:
                meta_info = input_file['RunHeaders'].arrays(metainfo_array_list)
                
                mars_meta['origin'] = "MAGIC"
                mars_meta['input_url'] = file_name
Moritz Huetten's avatar
Moritz Huetten committed
917

Moritz Huetten's avatar
Moritz Huetten committed
918
                mars_meta['number'] = int(meta_info[b'MRawRunHeader.fRunNumber'][0])
Moritz Huetten's avatar
Moritz Huetten committed
919
                mars_meta['number_subrun'] = int(meta_info[b'MRawRunHeader.fSubRunIndex'][0])
Moritz Huetten's avatar
Moritz Huetten committed
920
921
                mars_meta['source_ra'] = meta_info[b'MRawRunHeader.fSourceRA'][0] / seconds_per_hour * degrees_per_hour * u.deg
                mars_meta['source_dec'] = meta_info[b'MRawRunHeader.fSourceDEC'][0] / seconds_per_hour * u.deg
Moritz Huetten's avatar
Moritz Huetten committed
922
923
924
925
926
927

                is_mc_check = int(meta_info[b'MRawRunHeader.fRunType'][0])
                if is_mc_check == 0:
                    is_mc_check = False
                elif is_mc_check == 256:
                    is_mc_check = True
Moritz Huetten's avatar
Moritz Huetten committed
928
929
                else:
                    msg = "Run type (Data or MC) of MAGIC data file not recognised."
Moritz Huetten's avatar
Moritz Huetten committed
930
931
                    logger.error(msg)
                    raise ValueError(msg)
Moritz Huetten's avatar
Moritz Huetten committed
932
                if is_mc_check != is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
933
                    msg = "Inconsistent run type (data or MC) between file name and runheader content."
Moritz Huetten's avatar
Moritz Huetten committed
934
935
                    logger.error(msg)
                    raise ValueError(msg)
Moritz Huetten's avatar
Moritz Huetten committed
936

Moritz Huetten's avatar
Moritz Huetten committed
937
                # Reading the info only contained in real data
Moritz Huetten's avatar
Moritz Huetten committed
938
                if not is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
939
                    badpixelinfo = input_file['RunHeaders']['MBadPixelsCam.fArray.fInfo'].array(uproot.asjagged(uproot.asdtype(np.int32))).flatten().reshape((4, 1183), order='F')
Moritz Huetten's avatar
Moritz Huetten committed
940
941
                    # now we have 4 axes:
                    # 0st axis: empty (?)
Moritz Huetten's avatar
Moritz Huetten committed
942
943
944
945
                    # 1st axis: Unsuitable pixels
                    # 2nd axis: Uncalibrated pixels (says why pixel is unsuitable)
                    # 3rd axis: Bad hardware pixels (says why pixel is unsuitable)
                    # Each axis cointains a 32bit integer encoding more information about the specific problem, see MARS software, MBADPixelsPix.h
Moritz Huetten's avatar
Moritz Huetten committed
946
                    unsuitable_pix_bitinfo = badpixelinfo[1][:n_camera_pixels] # take first axis
Moritz Huetten's avatar
Moritz Huetten committed
947
                    # extract unsuitable bit:
948
                    unsuitable_pix = np.zeros(n_camera_pixels, dtype = np.bool)
Moritz Huetten's avatar
Moritz Huetten committed
949
                    for i in range(n_camera_pixels):
950
951
                        unsuitable_pix[i] = int('\t{0:08b}'.format(unsuitable_pix_bitinfo[i]&0xff)[-2])
                    monitoring_data['badpixelinfo'].append(unsuitable_pix)
Moritz Huetten's avatar
Moritz Huetten committed
952
953
                    # save time interval of badpixel info:
                    monitoring_data['badpixelinfoMJDrange'].append([event_mjd[0], event_mjd[-1]])
954

Moritz Huetten's avatar
Moritz Huetten committed
955
            except KeyError:
956
                logger.warning("RunHeaders tree not present in file. Cannot read meta information - will assume it is a real data run.")
Moritz Huetten's avatar
Moritz Huetten committed
957
                is_mc = False
958

959
            # try to read Pedestals tree (soft fail if not present)
Moritz Huetten's avatar
Moritz Huetten committed
960
            if not is_mc:
961
962
                try:
                    pedestal_info = input_file['Pedestals'].arrays(pedestal_array_list)
Moritz Huetten's avatar
Moritz Huetten committed
963

964
965
966
967
968
969
970
971
972
973
974
                    pedestal_mjd = pedestal_info[b'MTimePedestals.fMjd']
                    pedestal_millisec = pedestal_info[b'MTimePedestals.fTime.fMilliSec']
                    pedestal_nanosec = pedestal_info[b'MTimePedestals.fNanoSec']
                    n_pedestals = len(pedestal_mjd)
                    pedestal_mjd = pedestal_mjd + (pedestal_millisec / 1e3 + pedestal_nanosec / 1e9) / seconds_per_day
                    monitoring_data['PedestalMJD'] = scipy.concatenate((monitoring_data['PedestalMJD'], pedestal_mjd))
                    for quantity in ['Mean', 'Rms']:
                        for i_pedestal in range(n_pedestals):
                            monitoring_data['PedestalFundamental'][quantity].append(pedestal_info['MPedPhotFundamental.fArray.f{:s}'.format(quantity).encode()][i_pedestal][:n_camera_pixels])
                            monitoring_data['PedestalFromExtractor'][quantity].append(pedestal_info['MPedPhotFromExtractor.fArray.f{:s}'.format(quantity).encode()][i_pedestal][:n_camera_pixels])
                            monitoring_data['PedestalFromExtractorRndm'][quantity].append(pedestal_info['MPedPhotFromExtractorRndm.fArray.f{:s}'.format(quantity).encode()][i_pedestal][:n_camera_pixels])
Moritz Huetten's avatar
Moritz Huetten committed
975

976
                except KeyError:
Moritz Huetten's avatar
Moritz Huetten committed
977
                    logger.warning("Pedestals tree not present in file. Cleaning algorithm may fail.")
978

979
            # Reading pointing information (in units of degrees):
980
981
            if 'MPointingPos.' in input_file['Events']:
                # Retrieving the telescope pointing direction
982
983
                pointing = input_file['Events'].arrays(pointing_array_list)

984
985
986
987
                pointing_zd = pointing[b'MPointingPos.fZd'] - pointing[b'MPointingPos.fDevZd']
                pointing_az = pointing[b'MPointingPos.fAz'] - pointing[b'MPointingPos.fDevAz']
                pointing_ra = (pointing[b'MPointingPos.fRa'] + pointing[b'MPointingPos.fDevHa']) * degrees_per_hour # N.B. the positive sign here, as HA = local sidereal time - ra
                pointing_dec = pointing[b'MPointingPos.fDec'] - pointing[b'MPointingPos.fDevDec']
988
989
            else:
                # Getting the telescope drive info
990
991
992
993
994
                drive = input_file['Drive'].arrays(drive_array_list)

                drive_mjd = drive[b'MReportDrive.fMjd']
                drive_zd = drive[b'MReportDrive.fCurrentZd']
                drive_az = drive[b'MReportDrive.fCurrentAz']
995
                drive_ra = drive[b'MReportDrive.fRa'] * degrees_per_hour
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
                drive_dec = drive[b'MReportDrive.fDec']

                # Finding only non-repeating drive entries
                # Repeating entries lead to failure in pointing interpolation
                non_repeating = scipy.diff(drive_mjd) > 0
                non_repeating = scipy.concatenate((non_repeating, [True]))

                # Filtering out the repeating ones
                drive_mjd = drive_mjd[non_repeating]
                drive_zd = drive_zd[non_repeating]
                drive_az = drive_az[non_repeating]
                drive_ra = drive_ra[non_repeating]
                drive_dec = drive_dec[non_repeating]

                if len(drive_zd) > 2:
                    # If there are enough drive data, creating azimuth and zenith angles interpolators
                    drive_zd_pointing_interpolator = scipy.interpolate.interp1d(drive_mjd, drive_zd, fill_value="extrapolate")
                    drive_az_pointing_interpolator = scipy.interpolate.interp1d(drive_mjd, drive_az, fill_value="extrapolate")

                    # Creating azimuth and zenith angles interpolators
                    drive_ra_pointing_interpolator = scipy.interpolate.interp1d(drive_mjd, drive_ra, fill_value="extrapolate")
                    drive_dec_pointing_interpolator = scipy.interpolate.interp1d(drive_mjd, drive_dec, fill_value="extrapolate")

                    # Interpolating the drive pointing to the event time stamps
1020
1021
1022
1023
                    pointing_zd = drive_zd_pointing_interpolator(event_mjd)
                    pointing_az = drive_az_pointing_interpolator(event_mjd)
                    pointing_ra = drive_ra_pointing_interpolator(event_mjd)
                    pointing_dec = drive_dec_pointing_interpolator(event_mjd)
1024
1025
1026

                else:
                    # Not enough data to interpolate the pointing direction.
1027
1028
1029
1030
                    pointing_zd = scipy.repeat(-1, len(event_mjd))
                    pointing_az = scipy.repeat(-1, len(event_mjd))
                    pointing_ra = scipy.repeat(-1, len(event_mjd))
                    pointing_dec = scipy.repeat(-1, len(event_mjd))
1031

Moritz Huetten's avatar
wip    
Moritz Huetten committed
1032
            # check for bit flips in the stereo event ID:
1033
            dx = np.diff(stereo_event_number.astype(np.int))
Moritz Huetten's avatar
wip    
Moritz Huetten committed
1034
            dx_id_flip = np.where(dx < 0)[0]
Moritz Huetten's avatar
Moritz Huetten committed
1035
            if len(dx_id_flip) > 0:
1036
1037
1038
1039
                logger.warning("Warning: detected %d bitflips. Flag affected events as unsuitable" %len(dx_id_flip))
                for i in dx_id_flip:
                    trigger_pattern[i] = -1
                    trigger_pattern[i+1] = -1
Moritz Huetten's avatar
wip    
Moritz Huetten committed
1040

1041
1042
            event_data['charge'].append(charge)
            event_data['arrival_time'].append(arrival_time)
Moritz Huetten's avatar
Moritz Huetten committed
1043
            event_data['mars_meta'].append(mars_meta)
1044
            event_data['trigger_pattern'] = scipy.concatenate((event_data['trigger_pattern'], trigger_pattern))
1045
            event_data['stereo_event_number'] = scipy.concatenate((event_data['stereo_event_number'], stereo_event_number))
1046
1047
1048
1049
            event_data['pointing_zd'] = scipy.concatenate((event_data['pointing_zd'], pointing_zd))
            event_data['pointing_az'] = scipy.concatenate((event_data['pointing_az'], pointing_az))
            event_data['pointing_ra'] = scipy.concatenate((event_data['pointing_ra'], pointing_ra))
            event_data['pointing_dec'] = scipy.concatenate((event_data['pointing_dec'], pointing_dec))
1050
1051

            # Reading MC only information:
Moritz Huetten's avatar
Moritz Huetten committed
1052
            if is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
1053
                mc_info = input_file['Events'].arrays(mc_list)
Moritz Huetten's avatar
Moritz Huetten committed
1054
                # N.B.: For MC, there is only one subrun, so do not need to 'append'
Moritz Huetten's avatar
Moritz Huetten committed
1055
1056
1057
1058
1059
1060
1061
                event_data['true_energy'] = mc_info[b'MMcEvt.fEnergy']
                event_data['true_zd'] = mc_info[b'MMcEvt.fTheta']
                event_data['true_az'] = mc_info[b'MMcEvt.fPhi']
                event_data['true_shower_primary_id'] = mc_info[b'MMcEvt.fPartId']
                event_data['true_h_first_int'] = mc_info[b'MMcEvt.fZFirstInteraction']
                event_data['true_core_x'] = mc_info[b'MMcEvt.fCoreX']
                event_data['true_core_y'] = mc_info[b'MMcEvt.fCoreY']
1062
1063
1064

            event_data['file_edges'].append(len(event_data['trigger_pattern']))

Moritz Huetten's avatar
Moritz Huetten committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        if not is_mc:
            try:
                monitoring_data['badpixelinfo'] = np.array(monitoring_data['badpixelinfo'])
                monitoring_data['badpixelinfoMJDrange'] = np.array(monitoring_data['badpixelinfoMJDrange'])
                # sort monitoring data:
                order = np.argsort(monitoring_data['PedestalMJD'])
                monitoring_data['PedestalMJD'] = monitoring_data['PedestalMJD'][order]
                
                for quantity in ['Mean', 'Rms']:
                    monitoring_data['PedestalFundamental'][quantity] = np.array(monitoring_data['PedestalFundamental'][quantity])
                    monitoring_data['PedestalFromExtractor'][quantity] = np.array(monitoring_data['PedestalFromExtractor'][quantity])
                    monitoring_data['PedestalFromExtractorRndm'][quantity] = np.array(monitoring_data['PedestalFromExtractorRndm'][quantity])
Moritz Huetten's avatar
Moritz Huetten committed
1077

Moritz Huetten's avatar
Moritz Huetten committed
1078
1079
            except:
                pass
Moritz Huetten's avatar
Moritz Huetten committed
1080

1081
        return event_data, monitoring_data
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

    def _find_pedestal_events(self):
        """
        This internal method identifies the IDs (order numbers) of the
        pedestal events in the run.

        Returns
        -------
        dict:
            A dictionary of pedestal event IDs in M1/2 separately.
        """

        pedestal_ids = dict()

        pedestal_trigger_pattern = 8

        for telescope in self.event_data:
            ped_triggers = np.where(self.event_data[telescope]['trigger_pattern'] == pedestal_trigger_pattern)
            pedestal_ids[telescope] = ped_triggers[0]

        return pedestal_ids

    def _find_stereo_events(self):
        """
        This internal methods identifies stereo events in the run.

        Returns
        -------
        list:
            A list of pairs (M1_id, M2_id) corresponding to stereo events in the run.
        """
1113
1114
1115
1116
1117

        stereo_ids = []

        n_m1_events = len(self.event_data['M1']['stereo_event_number'])
        n_m2_events = len(self.event_data['M2']['stereo_event_number'])
Ievgen Vovk's avatar
Ievgen Vovk committed
1118
        if (n_m1_events == 0) or (n_m2_events == 0):
1119
1120
            return stereo_ids

Ievgen Vovk's avatar
Ievgen Vovk committed
1121
        if not self.is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
1122
            data_trigger_pattern = 128
Ievgen Vovk's avatar
Ievgen Vovk committed
1123

Moritz Huetten's avatar
Moritz Huetten committed
1124
            m2_data_condition = (self.event_data['M2']['trigger_pattern'] == data_trigger_pattern)
Ievgen Vovk's avatar
Ievgen Vovk committed
1125

Moritz Huetten's avatar
Moritz Huetten committed
1126
1127
1128
1129
            for m1_id in range(0, n_m1_events):
                if self.event_data['M1']['trigger_pattern'][m1_id] == data_trigger_pattern:
                    m2_stereo_condition = (self.event_data['M2']['stereo_event_number'] ==
                                           self.event_data['M1']['stereo_event_number'][m1_id])
Ievgen Vovk's avatar
Ievgen Vovk committed
1130

Moritz Huetten's avatar
Moritz Huetten committed
1131
                    m12_match = np.where(m2_data_condition & m2_stereo_condition)
Ievgen Vovk's avatar
Ievgen Vovk committed
1132

Moritz Huetten's avatar
Moritz Huetten committed
1133
1134
1135
1136
1137
                    if len(m12_match[0]) > 0:
                        stereo_pair = (m1_id, m12_match[0][0])
                        stereo_ids.append(stereo_pair)
        else:
            data_trigger_pattern = 1
Ievgen Vovk's avatar
Ievgen Vovk committed
1138

Moritz Huetten's avatar
Moritz Huetten committed
1139
            m2_data_condition = (self.event_data['M2']['trigger_pattern'] == data_trigger_pattern)
Ievgen Vovk's avatar
Ievgen Vovk committed
1140

Moritz Huetten's avatar
Moritz Huetten committed
1141
1142
1143
1144
            for m1_id in range(0, n_m1_events):
                if self.event_data['M1']['trigger_pattern'][m1_id] == data_trigger_pattern and self.event_data['M1']['stereo_event_number'][m1_id] != 0:
                    m2_stereo_condition = (self.event_data['M2']['stereo_event_number'] ==
                                           self.event_data['M1']['stereo_event_number'][m1_id])
Ievgen Vovk's avatar
Ievgen Vovk committed
1145

Moritz Huetten's avatar
Moritz Huetten committed
1146
                    m12_match = np.where(m2_data_condition & m2_stereo_condition)
Ievgen Vovk's avatar
Ievgen Vovk committed
1147

Moritz Huetten's avatar
Moritz Huetten committed
1148
1149
1150
                    if len(m12_match[0]) > 0:
                        stereo_pair = (m1_id, m12_match[0][0])
                        stereo_ids.append(stereo_pair)
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

        return stereo_ids

    def _find_mono_events(self):
        """
        This internal method identifies the IDs (order numbers) of the
        pedestal events in the run.

        Returns
        -------
        dict:
            A dictionary of pedestal event IDs in M1/2 separately.
        """

        mono_ids = dict()
        mono_ids['M1'] = []
        mono_ids['M2'] = []
Moritz Huetten's avatar
Moritz Huetten committed
1168
        
1169
1170
        n_m1_events = len(self.event_data['M1']['stereo_event_number'])
        n_m2_events = len(self.event_data['M2']['stereo_event_number'])
1171

Ievgen Vovk's avatar
Ievgen Vovk committed
1172
        if not self.is_mc:
Moritz Huetten's avatar
Moritz Huetten committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
            data_trigger_pattern = 128
    
            m1_data_condition = self.event_data['M1']['trigger_pattern'] == data_trigger_pattern
            m2_data_condition = self.event_data['M2']['trigger_pattern'] == data_trigger_pattern
    
            for m1_id in range(0, n_m1_events):
                if m1_data_condition[m1_id]:
                    m2_stereo_condition = (self.event_data['M2']['stereo_event_number'] ==
                                           self.event_data['M1']['stereo_event_number'][m1_id])
    
                    m12_match = np.where(m2_data_condition & m2_stereo_condition)
    
                    if len(m12_match[0]) == 0:
                        mono_ids['M1'].append(m1_id)
    
            for m2_id in range(0, n_m2_events):
                if m2_data_condition[m2_id]:
                    m1_stereo_condition = (self.event_data['M1']['stereo_event_number'] ==
                                           self.event_data['M2']['stereo_event_number'][m2_id])
    
                    m12_match = np.where(m1_data_condition & m1_stereo_condition)
    
                    if len(m12_match[0]) == 0:
                        mono_ids['M2'].append(m2_id)
        else:
1198

Moritz Huetten's avatar
Moritz Huetten committed
1199
1200
1201
            data_trigger_pattern = 1
            m1_data_condition = self.event_data['M1']['trigger_pattern'] == data_trigger_pattern
            m2_data_condition = self.event_data['M2']['trigger_pattern'] == data_trigger_pattern
1202
1203
1204

            # shortcut if only single file is loaded:
            if n_m1_events == 0:
1205
1206
                if n_m2_events > 0:
                    mono_ids['M2'] = np.arange(0, n_m2_events)[m2_data_condition]
1207
1208
                return mono_ids
            if n_m2_events == 0:
1209
1210
                if n_m1_events > 0:
                    mono_ids['M1'] = np.arange(0, n_m1_events)[m1_data_condition]
1211
1212
                return mono_ids

Moritz Huetten's avatar
Moritz Huetten committed
1213
1214
1215
1216
1217
1218
1219
1220
            for m1_id in range(0, n_m1_events):
                if m1_data_condition[m1_id]:
                    if self.event_data['M1']['stereo_event_number'][m1_id] == 0:
                        mono_ids['M1'].append(m1_id)
            for m2_id in range(0, n_m2_events):
                if m2_data_condition[m2_id]:
                    if self.event_data['M2']['stereo_event_number'][m2_id] == 0:
                        mono_ids['M2'].append(m2_id)
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

        return mono_ids

    def _get_pedestal_file_num(self, pedestal_event_num, telescope):
        """
        This internal method identifies the M1/2 file number of the
        given pedestal event in M1/2 file lists, corresponding to this run.

        Parameters
        ----------
        pedestal_event_num: int
            Order number of the event in the list of pedestal events
            of the specified telescope, corresponding to this run.
        telescope: str
            The name of the telescope to which this event corresponds.
            May be "M1" or "M2".

        Returns
        -------
        file_num:
            Order number of the corresponding file in the M1 or M2 file list.
        """

        event_id = self.pedestal_ids[telescope][pedestal_event_num]
        file_num = np.digitize([event_id], self.event_data[telescope]['file_edges'])
        file_num = file_num[0] - 1

        return file_num

    def _get_stereo_file_num(self, stereo_event_num):
        """
        This internal method identifies the M1/2 file numbers of the
        given stereo event in M1/2 file lists, corresponding to this run.

        Parameters
        ----------
        stereo_event_num: int
            Order number of the event in the list of stereo events corresponding
            to this run.

        Returns
        -------
        m1_file_num:
            Order number of the corresponding file in the M1 file list.
        m2_file_num:
            Order number of the corresponding file in the M2 file list.
        """

        m1_id = self.stereo_ids[stereo_event_num][0]
        m2_id = self.stereo_ids[stereo_event_num][1]
        m1_file_num = np.digitize([m1_id], self.event_data['M1']['file_edges'])
        m2_file_num = np.digitize([m2_id], self.event_data['M2']['file_edges'])

        m1_file_num = m1_file_num[0] - 1
        m2_file_num = m2_file_num[0] - 1

        return m1_file_num, m2_file_num

    def _get_mono_file_num(self, mono_event_num, telescope):
        """
        This internal method identifies the M1/2 file number of the
        given mono event in M1/2 file lists, corresponding to this run.

        Parameters
        ----------
        mono_event_num: int
            Order number of the event in the list of stereo events corresponding
            to this run.
        telescope: str
            The name of the telescope to which this event corresponds.
            May be "M1" or "M2".

        Returns
        -------
        file_num:
            Order number of the corresponding file in the M1 or M2 file list.
        """

        event_id = self.mono_ids[telescope][mono_event_num]
        file_num = np.digitize([event_id], self.event_data[telescope]['file_edges'])
        file_num = file_num[0] - 1

        return file_num

    def get_pedestal_event_data(self, pedestal_event_num, telescope):
        """
        This method read the photon content and arrival time (per pixel)
        for the specified pedestal event. Also returned is the event telescope pointing
        data.

        Parameters
        ----------
        pedestal_event_num: int
            Order number of the event in the list of pedestal events for the
            given telescope, corresponding to this run.
        telescope: str
            The name of the telescope to which this event corresponds.
            May be "M1" or "M2".

        Returns
        -------
        dict:
            The output has the following structure:
            'image' - photon_content in requested telescope
Ievgen Vovk's avatar
Ievgen Vovk committed
1325
            'pulse_time' - arrival_times in requested telescope
1326
1327
1328
1329
1330
            'pointing_az' - pointing azimuth [degrees]
            'pointing_zd' - pointing zenith angle [degrees]
            'pointing_ra' - pointing right ascension [degrees]
            'pointing_dec' - pointing declination [degrees]
            'mjd' - event arrival time [MJD]
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
        """

        file_num = self._get_pedestal_file_num(pedestal_event_num, telescope)
        event_id = self.pedestal_ids[telescope][pedestal_event_num]

        id_in_file = event_id - self.event_data[telescope]['file_edges'][file_num]

        photon_content = self.event_data[telescope]['charge'][file_num][id_in_file][:self.n_camera_pixels]
        arrival_times = self.event_data[telescope]['arrival_time'][file_num][id_in_file][:self.n_camera_pixels]

        event_data = dict()
        event_data['image'] = photon_content
Ievgen Vovk's avatar
Ievgen Vovk committed
1343
        event_data['pulse_time'] = arrival_times
1344
1345
1346
1347
1348
        event_data['pointing_az'] = self.event_data[telescope]['pointing_az'][event_id]
        event_data['pointing_zd'] = self.event_data[telescope]['pointing_zd'][event_id]
        event_data['pointing_ra'] = self.event_data[telescope]['pointing_ra'][event_id]
        event_data['pointing_dec'] = self.event_data[telescope]['pointing_dec'][event_id]
        event_data['mjd'] = self.event_data[telescope]['MJD'][event_id]
Moritz Huetten's avatar
Moritz Huetten committed
1349
        event_data['mars_meta'] = self.event_data[telescope]['mars_meta'][file_num]
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369

        return event_data

    def get_stereo_event_data(self, stereo_event_num):
        """
        This method read the photon content and arrival time (per pixel)
        for the specified stereo event. Also returned is the event telescope pointing
        data.

        Parameters
        ----------
        stereo_event_num: int
            Order number of the event in the list of stereo events corresponding
            to this run.

        Returns
        -------
        dict:
            The output has the following structure:
            'm1_image' - M1 photon_content
Ievgen Vovk's avatar
Ievgen Vovk committed
1370
            'm1_pulse_time' - M1 arrival_times
1371
            'm2_image' - M2 photon_content
1372
1373
1374
1375