IR_image_tools.py 78.3 KB
Newer Older
1
2
3
# -*- coding: utf-8 -*-
"""
Created on Wed May  9 14:56:32 2018
4
Version: 3.3.3
5
@author: Holger Niemann, Peter Drewelow, Yu Gao
6
7
8

mainly to clean up the downloadversionIRdata code
Tools for:
9
10
    checking IR images,
    calculate gain and offset again from
11
12
13
14
15
16
    check backgroundframes
    check coldframes
    ...
"""
import numpy as np
import matplotlib.pyplot as plt
17
import matplotlib.patches as patches
18
from IR_config_constants import portcamdict, IRCAMBadPixels_path, parameter_file_path
19
import os
20
import datetime
21
22
#import h5py
#import glob
23

24
25
26
27
def get_OP_by_time(time_ns=None, shot_no=None, program_str=None):
    '''Derives operation phase (OP) of W7-X based on either:
       a nanosacond time stamp, a MDSplus style shot no. or a program ID.
       IN:
28
          time_ns      - integer of nanosecond time stamp,
29
                         e.g. 1511972727249834301 (OPTIONAL)
30
          shot_no      - integer of MDSplus style shot number,
31
                         e.g. 171207022 (OPTIONAL)
32
          program_str  - string of CoDaQ ArchiveDB style prgram number or date,
33
34
35
36
37
38
39
40
41
42
43
44
45
46
                         e.g. '20171207.022' or '20171207' (OPTIONAL)
       RETURN:
          conn         - MDSplus connection object, to be used in e.g. 1511972727249834301
                         read_MDSplus_image_simple(), read_MDSplus_metadata()
   '''
    # derive operation phase (OP) from time as nanosecond time stamp or string
    if time_ns is not None:
        dateOP = datetime.datetime.utcfromtimestamp(time_ns/1e9)
    elif shot_no is not None:
        dateOP = datetime.datetime.strptime(str(shot_no)[:6], '%y%m%d')
    elif program_str is not None:
        dateOP = datetime.datetime.strptime(program_str[:8], '%Y%m%d')
    else:
        raise Exception('get_OP_by_time: ERROR! neither time, shot no. or program ID provided')
47

48
    if dateOP.year == 2017:
49
50
51
52
53
54
        if dateOP.month > 8 and dateOP.month < 12:
            OP = "OP1.2a"
        elif dateOP.month == 8 and dateOP.day >= 28:
            OP = "OP1.2a"
        elif dateOP.month == 12 and dateOP.day < 8:
            OP = "OP1.2a"
55
        else:
56
            OP = None
57
    elif dateOP.year >= 2018:
58
59
60
        return "OP1.2b"
    elif dateOP.year <= 2016 and dateOP.year >= 2015:
        if (dateOP.year == 2016 and dateOP.month <= 3) or (dateOP.year == 2015 and dateOP.month == 12):
61
            OP = "OP1.1"
62
        else:
63
64
65
66
67
68
69
70
71
            OP = None
    return OP

def bestimmtheitsmass_general(data, fit):
    R = 0
    if len(fit) == len(data):
        mittel = np.sum(data)/len(data)
        qam = quad_abweich_mittel(fit, mittel)
        R = qam/(qam+quad_abweich(data, fit))
72
    else:
73
        print("bestimmtheitsmass_general: Arrays must have same dimensions")
74
    return R
75

76
77
78
79
80
81
def bestimmheitsmass_linear(data, fit, debugmode=False):
    R2 = 0
    if len(fit) == len(data):
        mittel_D = np.mean(data)#np.sum(data)/len(data)
        mittel_F = np.mean(fit)
        R2 = quad_abweich_mittel(fit, mittel_D)/quad_abweich_mittel(data, mittel_D)
82
        if debugmode:
83
84
            print(mittel_D, mittel_F, quad_abweich_mittel(fit, mittel_D),
                  quad_abweich_mittel(data, mittel_D), R2)
85
86
87
    else:
        print("bestimmtheitsmass_linear: Arrays must have same dimensions")
    return R2
88
89
90

def quad_abweich_mittel(data, mittel):
    R = 0
91
    for i in data:
92
        R = R+(i-mittel)**2
93
    return R
94
95
96
97

def quad_abweich(data, fit):
    R = 0
    if len(fit) == len(data):
98
        for i in range(len(data)):
99
            R = R+(data[i]-fit[i])**2
100
    else:
101
        print("quad_abweich: Arrays must have same dimensions")
102
103
104
    return R

def find_nearest(array, value):
105
106
107
    #a=array
    a = [x - value for x in array]
    mini = np.min(np.abs(a))
108
109
    try: idx = a.index(mini)
    except: idx = a.index(-mini)
110
    return idx#array[idx]
111
112

def check_coldframe(coldframe, references=None, threshold=0.5, plot_it=False):
113
114
115
    '''
    return true/false and the quality factor
    '''
116
    shapi = np.shape(coldframe)
117
    ##function  (np.arange(0,768)-384)**(2)/900-50
118
119
120
    datasets = []
    for i in [int(shapi[1]//4), int(shapi[1]//2), int(shapi[1]//4*3)]:
        dataline = coldframe[0:shapi[0], i]
121
        datasets.append(dataline-np.mean(dataline))
122
123
124
125
126
127
    if references == None:
        references = []
        for dat in datasets:
            mini = np.mean(dat[shapi[0]/2-50:shapi[0]/2+50])
            a = (np.mean(dat[0:50])-mini)/(int(shapi[0]/2))**2
            reference = a*(np.arange(0, shapi[0])-int(shapi[0]/2))**(2)+mini
128
            references.append(reference)
129
    bestimmtheit = []
130
131
    if plot_it:
        plt.figure()
132
        plt.imshow(coldframe, vmin=np.mean(coldframe)-500, vmax=np.mean(coldframe)+500)
133
134
        plt.figure()
    for i_dat in range(len(datasets)):
135
136
137
138
139
140
        dat = datasets[i_dat]
        reference = references[i_dat]
        bestimmtheit.append(bestimmtheitsmass_general(dat, reference))
        if plot_it:
            plt.plot(dat, label='data')
            plt.plot(reference, label='reference')
141
142
#            print(int(shapi[0]/2),1*(np.max(datasets[-1])-mini),mini)
            plt.legend()
143
144
    if np.mean(bestimmtheit) > threshold:
        return True, bestimmtheit
145
    else:
146
        return False, bestimmtheit
147

148
def check_coldframe_by_refframe(coldframe, reference_frame, threshold=0.8, plot_it=False):
149
150
    '''
    '''
151
152
153
154
    references = []
    shapi = np.shape(reference_frame)
    for i in [int(shapi[1]//5), int(shapi[1]//2), int(shapi[1]//4*3)]:
        dataline = reference_frame[0:shapi[0], i]
155
        references.append(dataline-np.mean(dataline))
156
157
158
    return check_coldframe(coldframe, references, threshold, plot_it)

def check_backgroundframe(backgroundframe, threshold=50):
159
160
161
    '''
    return true or false
    '''
162
163
164
165
166
167
    shapi = np.shape(backgroundframe)
    valid = True
    dataset = []
    for i in [int(shapi[1]//4), int(shapi[1]//2), int(shapi[1]//4*3)]:
        referenceline = backgroundframe[0:shapi[0], i]
        meanref = referenceline-np.mean(referenceline)
168
        dataset.append(np.max(meanref)-np.min(meanref))
169
170
171
172
173
    if np.mean(dataset) < threshold:
        valid = False
    return valid, np.mean(dataset)

def read_bad_pixels_from_file(port, shot_no=None, program=None, time_ns=None):
174
175
176
177
178
    '''Reads bad pixels stored in *.bpx file on E4 server.
       Requires one of the optional arguments shot_no or program.
        IN
            port            - integer of port no of camera
            shot_no         - integer of MDSplus style shot number, e.g. 171207022 (OPTIONAL)
179
            program         - string of CoDaQ ArchiveDB style prgram number or date,
180
181
                              e.g. '20171207.022' or '20171207' (OPTIONAL)
        OUT
182
            bad_pixle_list  - list of tuples (row,column) of pixel coordinates
183
184
                              as integer
    '''
185
    if shot_no is not None:
186
187
188
        OP = get_OP_by_time(shot_no=shot_no)
    elif program is not None:
        OP = get_OP_by_time(program_str=program)
189
190
    elif time_ns is not None:
        OP = get_OP_by_time(time_ns=time_ns)
191
192
    else:
        raise Exception('read_bad_pixels_from_file: ERROR! Need either shot no. or program string.')
193

194
195
    port_name = 'AEF{0}'.format(port)
    bad_pixel_file = 'badpixel_{0}.bpx'.format(portcamdict[OP][port_name][6:])
196
    try:
197
        data = np.genfromtxt(IRCAMBadPixels_path+bad_pixel_file, dtype=int)
198
        bad_pixle_list = list(zip(data[:, 1], data[:, 0]))
199
    except:
200
        bad_pixle_list = []
201
202
    return bad_pixle_list

203
def find_outlier_pixels(frame, tolerance=3, plot_it=False):#worry_about_edges=True,
204
    '''
205
    This function finds the bad pixels in a 2D dataset.
206
207
    Tolerance is the number of standard deviations used for cutoff.
    '''
208
209
210
211
212
213
214
    frame = np.array(frame)#, dtype=int)
    from scipy.ndimage import median_filter
    blurred = median_filter(frame, size=9)
    difference = frame - blurred
    threshold = tolerance*np.std(difference)
    mean = np.mean(difference)
    if plot_it:
215

216
217
        fig = plt.figure()
        fig.suptitle('find_outlier_pixels: histogram')
218
219
        plt.hist(difference.ravel(), 50, log=True, histtype='stepfilled')
        plt.axvline(mean, linewidth=2, color='k', label='mean')
220
221
        x1 = mean - np.std(difference)
        x2 = mean + np.std(difference)
222
        plt.axvspan(x1, x2, linewidth=2, facecolor='g', alpha=0.1, label='standard deviation')
223
224
        x1 = mean - tolerance*np.std(difference)
        x2 = mean + tolerance*np.std(difference)
225
        plt.axvspan(x1, x2, linewidth=2, facecolor='r', alpha=0.1, label='threshold for bad pixel')
226
227
        plt.legend()
        plt.show()
228

229
    #find the hot pixels
230
    bad_pixels = np.transpose(np.nonzero((np.abs(difference) > threshold)))
231
232
    bad_pixels = (bad_pixels).tolist()
    bad_pixels = [tuple(l) for l in bad_pixels]
233

234
235
236
237
    if plot_it:
        plt.figure()
        plt.imshow(frame)
        for i in range(len(bad_pixels)):
238
            plt.scatter(bad_pixels[i][1], bad_pixels[i][0], c='None')
239
        plt.show()
240

241
242
    return bad_pixels

243
def correct_images(images, badpixels, verbose=0):
244
245
    '''
    '''
246
    if type(badpixels) != int:
247
248
        if type(images) == list:
            # return corrected images also as list of 2D arrays
249
            for i in range(len(images)):
250
                images[i] = restore_bad_pixels(images[i], np.invert(badpixels == 1), verbose=verbose-1)
251
252
        else:
            # keep shape
253
            images = restore_bad_pixels(images, np.invert(badpixels == 1), verbose=verbose-1)
254
255
#        for i in range(len(images)):
#            images[i]=(restore_pixels(images[i],np.invert(badpixels==1))).astype(np.float32)
256
        if verbose > 0:
257
            print("correct_images: done")
258
259
    return images

260

261
262
263
264
def restore_bad_pixels(frames, bad_pixel, by_list=True, check_neighbours=True, plot_it=False, verbose=0):
    """Restore bad pixel by interpolation of adjacent pixels. Optionally make
       sure that adjacent pixels are not bad (time consuming). Default is to use
       a list of bad pixels and a for loop. For many bad pixels consider using
265
266
       the optinal alternative using a bad pixel mask.
        IN:
267
            frames              - either list of frames as 2D numpy array,
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                                  or 3D numpy array (frame number, n_rows, n_cols),
                                  or 2D numpy array (n_rows, n_cols)
            bad_pixel           - either list of tuples of bad pixel coordinates,
                                  or mask of pixel status (good=True, bad=False)
            by_list             - boolean of whether to use a list and a for loop (True),
                                  or to use a mask of bad pixel and array operations (False)
                                  (OPTIONAL: if not provided, True (list) is default)
            check_neighbours    - boolean of whether to check if neighbours of a bad pixel
                                  are not bad either before computing a mean
                                  (works only in list mode!)
                                  (OPTIONAL: if not provided, check is on)
            plot_it             - boolean to decide whether to plot intermediate
                                  results or not
                                  (OPTIONAL: if not provided, switched off)
            verbose             - integer of feedback level (amount of prints)
                                  (OPTIONAL: if not provided, only ERROR output)
        RETURN:
285
            frames              - 3D numpy array (frame number, n_rows, n_cols) of
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
                                  corrected frames
    """

    # make sure frames is correctly shaped
    if type(frames) == list:
        frames = np.array(frames)
        frame_shape = 'list'
    else:
        if len(np.shape(frames)) == 2:
            frames = np.array([frames])
            frame_shape = '2D'
        elif len(np.shape(frames)) == 3:
            frame_shape = '3D'
            pass
        else:
            raise Exception('restore_bad_pixels: ERROR! Unexpected shape of frames.')
    frame_dtype = frames.dtype
#    frames = frames.astype(float)
    n_frames, n_rows, n_cols = np.shape(frames)
    if plot_it:
        start_frame = np.copy(frames[0])
    
308
309
310
    # make sure bad pixel are provided as mask and list  
    if type(bad_pixel) is list:
        blist = bad_pixel
311
        bmask = np.ones([n_rows, n_cols], dtype=bool)
312
        for pix in blist:
313
314
315
316
            try:
                bmask[pix] = False
            except Exception as E:
                Warning(E)
317
318
        bmask = np.invert(bmask)
    else:
319
320
        if np.shape(bad_pixel)[0] == n_rows and np.shape(bad_pixel)[1] == n_cols:
            bmask = np.invert(bad_pixel)            
321
322
            x, y = np.where(bmask)
            blist = list(zip(x, y))
323
        else:
324
325
326
327
328
329
            raise Exception('restore_bad_pixels: ERROR! bad_pixel in bad shape {0}'.format(np.shape(bad_pixel)))
            
    if verbose > 0:
        print('restore_bad_pixels: {0} bad pixels to be restored: {1} ... '.format(len(blist), blist[:3]))    
    
    # expand frame by rows and columns of zeros to simplify treatment of edges
330
331
332
333
    frames = np.dstack([np.zeros([n_frames, n_rows], dtype=frame_dtype), frames, np.zeros([n_frames, n_rows], dtype=frame_dtype)])
    frames = np.hstack([np.zeros([n_frames, 1, n_cols+2], dtype=frame_dtype), frames, np.zeros([n_frames, 1, n_cols+2], dtype=frame_dtype)])
    bmask = np.vstack([np.zeros([1, n_cols], dtype=bool), bmask, np.zeros([1, n_cols], dtype=bool)])
    bmask = np.hstack([np.zeros([n_rows+2, 1], dtype=bool), bmask, np.zeros([n_rows+2, 1], dtype=bool)])
334
335
336
    
    # define number of neighbours (up to 4) ina an array of expanded frame size
    n_neighbours = np.ones([n_frames, n_rows+2, n_cols+2])*4
337
338
339
340
341
342
343
344
    n_neighbours[:, 1, :] = 3
    n_neighbours[:, -2, :] = 3
    n_neighbours[:, :, 1] = 3
    n_neighbours[:, :, -2] = 3
    n_neighbours[:, 1, 1] = 2
    n_neighbours[:, 1, -2] = 2
    n_neighbours[:, -2, 1] = 2
    n_neighbours[:, -2, -2] = 2
345
346
347
348
349
350
351
352
353
354
355
    
    if by_list:
        # ===== correct bad pixels using the list of bad pixels =====
        #
        
        for pos in blist:
            # Note:
            # pos points to real frame coordinates, while bmask, n_neighbours have been expanded!
            
            if check_neighbours:
                # takes only neighbours that are not bad
356
                pos_l = np.where(bmask[pos[0]+1,:pos[1]+1] == False)[0]
357
358
359
360
                if len(pos_l) != 0:
                    pos_l = pos_l[-1]
                else: 
                    pos_l = pos[1]+1
361
                pos_r = np.where(bmask[pos[0]+1,pos[1]+1:] == False)[0]
362
363
364
365
                if len(pos_r) != 0:
                    pos_r = pos_r[0] + pos[1]+1
                else: 
                    pos_r = pos[1]+2
366
                pos_t = np.where(bmask[:pos[0]+1,pos[1]+1] == False)[0]
367
368
369
370
                if len(pos_t) != 0:
                    pos_t = pos_t[-1]
                else: 
                    pos_t = pos[0]+1
371
                pos_b = np.where(bmask[pos[0]+1:,pos[1]+1] == False)[0]
372
373
374
375
                if len(pos_b) != 0:
                    pos_b = pos_b[0] + pos[0]+1
                else: 
                    pos_b = pos[0]+2
376
            else:
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
                # insensitive to neighbours being bad as well!
                pos_l = pos[1]
                pos_r = pos[1]+2
                pos_t = pos[0]
                pos_b = pos[0]+2
            average = (frames[:,pos[0]+1,pos_l].astype(float) + 
                       frames[:,pos[0]+1,pos_r].astype(float) + 
                       frames[:,pos_t,pos[1]+1].astype(float) + 
                       frames[:,pos_b,pos[1]+1].astype(float)) / n_neighbours[:,pos[0]+1,pos[1]+1]
            frames[:,pos[0]+1,pos[1]+1] = average.astype(frame_dtype)
        frames = frames[:,1:-1,1:-1]
        
    else:
        # ======= correct bad pixels using the bad pixel mask =======
        #
        # (insensitive to neighbours being bad as well!)
   
        # prepare mask arrays for neighbours by shifting it to left, right, top and bottom
395
396
397
398
        bmask_l = np.hstack([bmask[:, 1:], np.zeros([n_rows+2, 1], dtype=bool)])
        bmask_r = np.hstack([np.zeros([n_rows+2, 1], dtype=bool), bmask[:, :-1]])
        bmask_t = np.vstack([bmask[1:, :], np.zeros([1, n_cols+2], dtype=bool)])
        bmask_b = np.vstack([np.zeros([1, n_cols+2], dtype=bool), bmask[:-1, :]])
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        
    
        # -----------------------------------
        # restore by mask
        #
        frames[:,bmask] = ( (frames[:,bmask_l].astype(float) + 
                             frames[:,bmask_r].astype(float) + 
                             frames[:,bmask_t].astype(float) + 
                             frames[:,bmask_b].astype(float)) / n_neighbours[:,bmask] ).astype(frame_dtype)
        frames = frames[:,1:-1,1:-1]
    
    # plot comparison
    if plot_it:
        plt.figure()
        plt.title('bad pixel correction of first frame')
        m = np.mean(start_frame)
        s = np.std(start_frame)
        plt.imshow(start_frame, vmin=m-s, vmax=m+s)
        plt.colorbar()
        x,y = zip(*blist)
        plt.scatter(y,x, marker='o', s=5, c='r', linewidths=1)
        plt.tight_layout()
        plt.show()

    if frame_shape == 'list':
        frames = list(frames)
    elif frame_shape == '2D' and len(np.shape(frames))==3:
        frames = frames[0]
        
    return frames

430
431

def generate_new_hot_image(cold,reference_cold,reference_hot):
432
433
    '''
    '''
434
    if cold is None or reference_cold is None or reference_hot is None:
435
        raise Exception("generate_new_hot_image: Cannot Calculate new Hot image, if images are missing!")
436
437
438
    else:
        return reference_hot+(cold-reference_cold)
    
439
440
441
def calculate_gain_offset_image_pix(cold_image,hot_image=None,reference_cold=None,reference_hot=None,verbose=0):    
    '''
    '''
442
    if hot_image is None:
443
        hot_image=generate_new_hot_image(cold_image,reference_cold,reference_hot)
444
445
    if verbose>0:
        print("calculate_gain_offset_image_pix: calculate gain and offset")        
446
447
448
449
450
451
452
    Sh_ref =  hot_image[ ( np.int( np.shape(hot_image)[0]   /2  )  ) ][np.int( (np.shape(hot_image)[1]   /2  ) ) ]          
    Sc_ref =  cold_image[ ( np.int(  (np.shape(cold_image)[0])  /2 )  ) ][( np.int(  (np.shape(cold_image)[1])  /2 ) ) ]  
    Gain_rel =  ( Sh_ref  - Sc_ref ) / ( hot_image  - cold_image)    
    Off_h_rel = Sh_ref -   hot_image*Gain_rel
    Off_c_rel = Sc_ref -   cold_image*Gain_rel    
    Offset_rel  = ( Off_h_rel + Off_c_rel ) /2
    return Gain_rel,Offset_rel
453

454
def calculate_gain_offset_image(cold_image,hot_image=None,reference_cold=None,reference_hot=None,verbose=0):    
455
    if hot_image is None:
456
        hot_image=generate_new_hot_image(cold_image,reference_cold,reference_hot)
457
    if verbose>0:
458
        print("calculate_gain_offset_image: calculate gain and offset")  
459
460
461
    
#    Sh_ref =  hot_image[ ( np.int( np.shape(hot_image)[0]   /2  )  ) ][np.int( (np.shape(hot_image)[1]   /2  ) ) ]          
#    Sc_ref =  cold_image[ ( np.int(  (np.shape(cold_image)[0])  /2 )  ) ][( np.int(  (np.shape(cold_image)[1])  /2 ) ) ]  
462
463
#    print(hot_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])
#    print(cold_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])
464
465
466
467
468
469
    Sh_ref = np.mean(hot_image[( np.int(np.shape(hot_image)[0]/2))-2: (np.int(np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3])    
    Sc_ref = np.mean(cold_image[( np.int(np.shape(cold_image)[0]/2))-2: (np.int(np.shape(cold_image)[0]/2))+3,np.int((np.shape(cold_image)[1]/2))-2:np.int((np.shape(cold_image)[1]/2))+3])    
    difference_image = hot_image  - cold_image
    indexlist = np.where(difference_image==0)
    difference_image[indexlist] = 0.001
    Gain_rel = ( Sh_ref  - Sc_ref ) / ( difference_image)    
470
    Gain_rel[indexlist]=0
471
472
473
474
    Off_h_rel = Sh_ref - hot_image*Gain_rel
    Off_c_rel = Sc_ref - cold_image*Gain_rel    
    Offset_rel = ( Off_h_rel + Off_c_rel ) /2
    return Gain_rel, Offset_rel    
475
476
    
#%% functions from Yu Gao
477
#""" functions by Yu Gao"""
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#outdated by download_hot_cold_reference in downloadversionIRdata. removed to remove dependency on data on the E4-drive    
#==============================================================================
# def load_ref_images(port, exposuretime, verbose=0):
#     '''
#     load the reference cold and hot frame during calibration from local files.
#     @port: e.g. 'AEF10'
#     @exposuretime: int number.
#     '''
#     cameraname = portcamdict['OP1.2a'][port]
#     foldername = cameraname.split('_')[0] + '_' + cameraname.split('_')[2]
#     scanpath = os.path.join(IRCamRefImagespath, foldername)
#     coldref, hotref = [], []
#     for filename in glob.iglob(scanpath + '\*' + str(int(exposuretime)) + 'us.h5', recursive=True):
#         if 'hot' in filename:
#             if verbose>0:
#                 print('load_ref_images: read from ',filename)
#             with h5py.File(filename, 'r') as h5in:
#                 hotref = h5in[os.path.basename(filename)].value
#         elif 'cold' in filename:
#             if verbose>0:
#                 print('load_ref_images: read from ',filename)
#             with h5py.File(filename, 'r') as h5in:
#                 coldref = h5in[os.path.basename(filename)].value
#     return coldref, hotref
#==============================================================================
503
504

def reconstruct_coldframe (exposuretime, sT, a, bnew, coldref):
505
506
    cirebuild = a * sT + bnew * exposuretime + coldref
    return cirebuild
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
  
  
#%% other functions
def check_dublicates(array):
    a = array
    import collections
    return [item for item, count in collections.Counter(a).items() if count > 1]
    
def check_dublicates_2(array):
    seen = set()
    uniq = []
    for x in array:
        if x not in seen:
            uniq.append(x)
            seen.add(x)
522
523
    return uniq,seen

524
525
526
527
528
def get_work_list(pipepath,typ="q"):
    """
    """
    today=datetime.datetime.now()    
    cam_programs=[]
529
    if typ in ('q','load'):
530
531
532
        f=open(pipepath+str(today.year)+str(today.month)+"_"+typ+"_requests.txt")
    else:
        reasons=[]
533
        f = open(pipepath+"problematic_programs.txt")
534
535
536
    for line in f:
        koline=line.split("\t")
        if len(koline)>1:
537
538
            prog = koline[0]
            if typ in ('q','load'):
539
540
541
542
543
                cam_programs.append((prog,koline[1].split("\n")[0]))    
            else:
                cam_programs.append((prog,koline[1]))                    
                reasons.append(koline[2].split("\n")[0])
    f.close()
544
    if typ in ('q','load'):
545
546
547
548
549
550
        bla=check_dublicates_2(cam_programs)
        cam_programs=bla[0]
        return cam_programs
    else:
        return cam_programs,reasons

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#%% functions regarding wetted area calculation

def read_finger_info(file_name=None, OP='OP1.2b', verbose=0):
    '''Read divertor finger information from file. The referenced fingers are those
       defined in the IR profile mapping, i.e. the target modlues 5 and 6 are
       divided in inner and outer fingers (see 'finger_part' in result dictionary).
    
       INPUT
       -----
           file_name: str, optional
               file name of csv fiel with finger information
               (OPTIONAL: default is None, i.e. decide by OP)
           OP: str, optional
               label of operation phase of interest, e.g. 'OP1.2b'
               (OPTIONAL: default is 'OP1.2b', i.e. load TDU file)
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           finger_dic: dictionary
               dictionary with keys 'ID', 'target', 'target_element','n_profiles', 'width', 'finger_part' (see NOTES)
       NOTES
       -----
           contents of result dictionary:
               * 'ID' numpy array of integers of continuous finger number
               * 'target' list of strings of target identifier ('h_l' horizontal low-iota, 'h_m' horizontal middle part, 'h_h' horizontal high-iota, 'v' vertical)
               * 'target_element' numpy array of integers of target module number (1..9 on horizontal target, 1..3 on vertical target)
               * 'n_profiles' numpy array of integers of number of profiles defined on this finger
               * 'width' numpy array of floats of centre width of finger in meters
               * 'finger_part' numpy array of integers indicating with 0 this is a full finger and with 1 this is the second part of the previous finger
    '''
    if file_name is None:
        # assume OP is given
        if OP.startswith('OP1'):
            file_name='finger_info_TDU.csv'
        elif OP.startswith('OP2'):
            file_name='finger_info_HHF.csv'
    full_path = os.path.join(parameter_file_path, file_name)
    print(full_path)
591
    if verbose > 0:
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        print('read_finger_info: reading from file {0} in {1}'.format(file_name, parameter_file_path))
    if not os.path.isfile(full_path):
        raise Exception('read_finger_info: ERROR! file not found')
    
    finger_dic = {'ID': [],
                  'target': [],
                  'target_element':[],
                  'n_profiles':[],
                  'width':[],
                  'finger_part':[]}
    
    data = np.genfromtxt(full_path, delimiter=';', dtype=(int, "|S3", int, int, float, int))
    for i in range(len(data)):
        finger_dic['ID'].append( data[i][0] )
        finger_dic['target'].append( data[i][1].decode('UTF-8') )
        finger_dic['target_element'].append( data[i][2] )
        finger_dic['n_profiles'].append( data[i][3] )
        finger_dic['width'].append( data[i][4] )
        finger_dic['finger_part'].append( data[i][5] )
    
    finger_dic['ID'] = np.array(finger_dic['ID'])
    finger_dic['target_element'] = np.array(finger_dic['target_element'])
    finger_dic['n_profiles'] = np.array(finger_dic['n_profiles'])
    finger_dic['width'] = np.array(finger_dic['width'])
    finger_dic['finger_part'] = np.array(finger_dic['finger_part'])
    
    return finger_dic


621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
def derive_strike_line_width_per_module(heat_flux, mapping,mode='average', q_max=None,
                                  profile_average_range=3, noise_threshold=2E5,
                                  ports_loaded=None, verbose=0):
    ''' Derive strike-line width of heat flux array by integrating the total power load
        and dividing with a peak heat flux value.
        The peak heat flux value is either:
            1) the maximum within each divertor finger (mode='finger')
            2) the maximum of a whole divertor module (mode='module')
            3) the maximum of the mean divertor averaged toroidally (mode='average').
        Mode average is default. In case the input heat flux has only 2 dimensions 
        (from one divertor), mode 'average' and 'module' result in the same.
        Returned are the strike-line width(s) and the corresponding q_max value(s).
    
       INPUT
       -----
           heat_flux: numpy array
               array of heat fluxes from THEODOR on the profiles defined 
               in the IR mapping; can be 2D (one divertor), or 3D (multiple divertor modules)
           mapping: dictionary
               IR profile mapping information as returned by 
               downloadversionIRdara.download_heatflux_mapping_reference();
               minimum necessary keys are 'finger_ID' and 's'
           mode: str, optional
               label to identify the normalization mode, either 
               'module' (normalize by peak heat flux per torus module),
               'average' (normalize by peak heat flux in the toroidally mean heat flux pattern),
               'finger' (normalize by peak heat flux per finger in each torus module)
               (OPTIONAL: default is 'average')
           q_max: float or numpy array, optional
               either single peak heat flux value or a peak heat flux for each 
               divertor module or each finger (depends on mode)
               (OPTIONAL: default is None, i.e. derived based on mode)
           profile_average_range: int, optional
               number of central profiles on each finger to average the 
               integral heat flux on (this avoids hot leading edges and shadowed edges)
               (OPTIONAL: default is 3 profiles)
           noise_threshold: float, optional
               minimum heat flux level to crop heat_flux to, if heat flux has negative values
               (OPTIONAL: default is 200kW/m²)
           ports_loaded: list or str or int, optional if mode not 'average'
               label of divertor modules provided in heat_flux array for plots; 
               int of port number for single divertor data and list of 
               port numbers for heat flux from multiple divertor modules; #
               gets renamed if a mean heat flux pattern is used (mode 'average')
               (OPTIONAL: default is None, i.e. label will be 'w_s')
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           total_mean_width: float or numpy array
               mean strike-line width in a shape that depends on the mode (see NOTES)
           q_max: float or numpy array
               peak heat flux used for normalizatin in a shape that depends on the mode (see NOTES)
       NOTES
       -----
           The shape of the results varies depending on the dimension of the input
               * 2D: singel divertor modules heat flux
               * 3D: heat flux from multiple divertor modules
           and the mode to derive q_max ('module', 'average', 'finger'):
               * '2D' + 'module' or 'average' --> one value for total_wetted_area and q_max
               * '3D' + 'average' --> 1D numpy arrays with two values for total_wetted_area and q_max (upper and lower divertors)
               * '3D' + 'module' --> 1D numpy arays with a value for each torus module (first dimension of heat_flux)
               * '2D' + 'finger' --> 1D numpy arays with a value for each divertor finger
               * '3D' + 'finger' --> 2D numpy arays with a value for each torus module and each divertor finger
    '''
    #check input
    heat_flux_dim = len(np.shape(heat_flux))
    if mode == 'average' and ports_loaded == None and heat_flux_dim>2:
        raise Exception("derive_strike_line_width_per_module: ports must be specified in average mode since V3.3.2")
    elif mode == 'average' and heat_flux_dim > 2:
        try:
            llen=len(ports_loaded)
        except:
            raise Exception("derive_strike_line_width_per_module: each divertor need a description to calcualte proper the wetted area!")
        else:
            if llen!=len(heat_flux):
                raise Exception("derive_strike_line_width_per_module: number of given divertors and number of descriptions does not match!")
    # prepare mapping and finger information
    finger_dic = read_finger_info(verbose=verbose-1)
    finger_ID = finger_dic['ID']
    profile_no = mapping['Finger_ID'][0]
    
    # find profile IDs of central profiles on each finger
    central_profiles_on_finger = []
    is_central_profile = []
    for i_finger in range(len(finger_ID)):
        n_profiles = finger_dic['n_profiles'][i_finger]
        i_profile_start = n_profiles//2 - profile_average_range//2 -1
        central_profiles = i_finger*100 + np.arange(i_profile_start, i_profile_start+profile_average_range)
        central_profiles_on_finger.append(central_profiles)
        is_central_profile.append(np.logical_or.reduce([profile_no == centre_profile for centre_profile in central_profiles]))
    central_profiles_on_finger = np.array(central_profiles_on_finger)

    if np.nanmin(heat_flux) < 0:
        heat_flux[heat_flux<noise_threshold] = 0
        if verbose>0:
            print('derive_strike_line_width_per_module: set heat_flux < {0:.1f}kW/m² to 0'.format(noise_threshold/1E3))
                
    # reduce dimension of heat_flux if in 'average' mode
    if heat_flux_dim == 2 and mode == 'average':
        mode = 'module'
    elif heat_flux_dim == 3 and mode == 'average':
#        heat_flux = np.nanmean(heat_flux, axis=0)
        ## sort the divertors
        updiv=[]
        downdiv=[]
        for i in range(len(ports_loaded)):
            # entries in the array/list are either int or str or even float
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                ## what can it be? 'AEFXX'? But what about OP2 with the A or K ports? Still be 3 letters
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        heat_flux=np.array([np.nanmean(np.asarray(updiv),axis=0),np.nanmean(np.asarray(downdiv),axis=0)])
        del downdiv,updiv
#        heat_flux_dim = 3
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
        mode = 'module'
        if verbose>0:
            print('derive_strike_line_width_per_module: averaged 3D heat flux array over first dimension')
            
    if heat_flux_dim==3:
        # assume dimensions: toroidal index (camera ports), row, column
        n_ports = np.shape(heat_flux)[0]#, n_rows, n_cols 
        if verbose>0:
            print('derive_strike_line_width_per_module: deriving wetted area on {0} divertor modules in {1} mode...'.format(n_ports, mode))
        # derive q_max for normalization of integral
        if q_max is None:
            # derive q_max on every finger
            q_max_on_finger = []
            for i_finger in range(len(finger_ID)):
                q_max_on_finger.append([np.nanmax(h[is_central_profile[i_finger]]) for h in heat_flux])
            q_max_on_finger = np.array(q_max_on_finger)
            q_max_on_finger[q_max_on_finger==0] = 1
            if mode == 'module':
                # one value per torus half module
                q_max = np.nanmax(q_max_on_finger, axis=0)
            elif mode == 'finger':
                # one value per finger in each torus half module
                q_max = q_max_on_finger
            q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=np.zeros([n_ports])
        finger_strikeline_width = np.zeros([len(finger_ID), n_ports])
        strikeline_int = np.zeros([len(finger_ID), n_ports])
        for i_finger in range(len(finger_ID)):
            # initialize temporary line integral for each module
            central_line_integral = np.zeros(n_ports)
            # integrate over each central profile and average    
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
                s = mapping['s'][ij_profile]
                h = heat_flux[:,ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num( np.trapz(h, x=s, axis=1) )            
            # complete averaging process
            central_line_integral = central_line_integral / profile_average_range
            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*max(s))*1
            # normalize by q_max and multiply with width of finger
            strikeline_int[i_finger,:] = central_line_integral
            if mode == 'module':
                finger_strikeline_width[i_finger,:] = central_line_integral / q_max #* finger_dic['width'][i_finger]                
            elif mode == 'finger':
                finger_strikeline_width[i_finger,:] = central_line_integral / q_max[i_finger] #* finger_dic['width'][i_finger]                                    
        
    elif heat_flux_dim==2:
        # assume dimensions: row, column
        if verbose>0:
            print('derive_strike_line_width_per_module: deriving wetted area on single divertor module in {0} mode...'.format(mode))
        # derive q_max for normalization of integral
        if q_max is None:
            if mode == 'average' or mode == 'module':
                # one value
                q_max = np.nanmax(heat_flux[np.logical_or.reduce(is_central_profile)])
            elif mode == 'finger':
                # one value per finger
                q_max = []
                for i_finger in range(len(finger_ID)):
                    q_max.append( np.nanmax(heat_flux[is_central_profile[i_finger]]) )
                q_max = np.array(q_max)
                q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=0
        finger_strikeline_width = np.zeros([len(finger_ID)])
        strikeline_int = np.zeros([len(finger_ID)])
        for i_finger in range(len(finger_ID)):
            # integrate over each central profile and average
            central_line_integral = 0
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
                s = mapping['s'][ij_profile]            
                h = heat_flux[ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num( np.trapz(h, x=s, axis=0) )
            central_line_integral = central_line_integral / profile_average_range
            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*s)*1
            strikeline_int[i_finger] = central_line_integral
            if mode == 'average' or mode == 'module':
                finger_strikeline_width[i_finger] = central_line_integral / q_max #* finger_dic['width'][i_finger]
            elif mode == 'finger':
                finger_strikeline_width[i_finger] = central_line_integral / q_max[i_finger] #* finger_dic['width'][i_finger]
                
    
    # merge half-fingers of TM5 and TM6
    if np.any(finger_dic['finger_part']):
        if verbose>0:
            print('derive_strike_line_width_per_module: merge wetted area on half fingers of TM05 and TM06')
        new_finger_ID = np.copy(finger_ID)
        # scan backwards over fingers, merge and delete second finger halfs
        for i_finger in finger_ID[:0:-1]:
            if finger_dic['finger_part'][i_finger]:
                new_finger_ID = np.delete(new_finger_ID, i_finger)
                if heat_flux_dim==3 and mode != 'average':
                    finger_strikeline_width[i_finger-1,:] = finger_strikeline_width[i_finger-1,:] + finger_strikeline_width[i_finger,:] 
                    strikeline_int[i_finger-1,:] = strikeline_int[i_finger-1,:] + strikeline_int[i_finger,:] 
                else:
                    finger_strikeline_width[i_finger-1] = finger_strikeline_width[i_finger-1] + finger_strikeline_width[i_finger] 
                    strikeline_int[i_finger-1] = strikeline_int[i_finger-1] + strikeline_int[i_finger] 
                finger_strikeline_width = np.delete(finger_strikeline_width, i_finger, axis=0)
                strikeline_int=np.delete(strikeline_int, i_finger, axis=0)
                if mode == 'finger' and heat_flux_dim==3:
                    q_max[i_finger-1,:] = np.maximum(q_max[i_finger-1,:], q_max[i_finger,:])
                    q_max = np.delete(q_max, i_finger, axis=0)
                elif mode == 'finger' and heat_flux_dim==2:
                    q_max[i_finger-1] = np.maximum(q_max[i_finger-1], q_max[i_finger])
                    q_max = np.delete(q_max, i_finger, axis=0)
    
    # sum up
    # 'average' mode: sum all fingers over all torus modules --> wetted area of all divertors
    #                divide by n_ports --> get average wetted area per divertor
    # 'module' mode:  in each torus module sum over wetted area on all fingers 
    #                --> individual wetted areas per divertor
    # 'finger' mode: do not sum, since each finger was normalized with a differen q_max
    #                --> individual wetted areas per finger
    # if only one divertors heat flux is given, proceed as in local mode
    if mode == 'finger':
        total_mean_width = finger_strikeline_width
    else:
        Weights=np.nan_to_num(strikeline_int/np.sum(strikeline_int,axis=0))
#        print(Weights)
        WS=np.sum(Weights,axis=0)
        bla=np.where(WS==0)[0]
        for b in bla:
            Weights[:,b]=Weights[:,b]+1
        total_mean_width = np.average(finger_strikeline_width,axis=0,weights=Weights)

    return total_mean_width, q_max

def derive_peaking_factor_per_module(heat_flux, mapping,mode='average', q_max=None,
                                  profile_average_range=3, noise_threshold=2E5,
                                  ports_loaded=None, verbose=0):
    ''' Derive peaking of heat flux array by dividing the peak heat flux value 
        with the mean heat flux value the total power load.
        The peak heat flux value is either:
            1) the maximum within each divertor finger (mode='finger')
            2) the maximum of a whole divertor module (mode='module')
            3) the maximum of the mean divertor averaged toroidally (mode='average').
        Mode average is default. In case the input heat flux has only 2 dimensions 
        (from one divertor), mode 'average' and 'module' result in the same.
        Returned are the strike-line width(s) and the corresponding q_max value(s).
    
       INPUT
       -----
           heat_flux: numpy array
               array of heat fluxes from THEODOR on the profiles defined 
               in the IR mapping; can be 2D (one divertor), or 3D (multiple divertor modules)
           mapping: dictionary
               IR profile mapping information as returned by 
               downloadversionIRdara.download_heatflux_mapping_reference();
               minimum necessary keys are 'finger_ID' and 's'
           mode: str, optional
               label to identify the normalization mode, either 
               'module' (normalize by peak heat flux per torus module),
               'average' (normalize by peak heat flux in the toroidally mean heat flux pattern),
               'finger' (normalize by peak heat flux per finger in each torus module)
               (OPTIONAL: default is 'average')
           q_max: float or numpy array, optional
               either single peak heat flux value or a peak heat flux for each 
               divertor module or each finger (depends on mode)
               (OPTIONAL: default is None, i.e. derived based on mode)
           profile_average_range: int, optional
               number of central profiles on each finger to average the 
               integral heat flux on (this avoids hot leading edges and shadowed edges)
               (OPTIONAL: default is 3 profiles)
           noise_threshold: float, optional
               minimum heat flux level to crop heat_flux to, if heat flux has negative values
               (OPTIONAL: default is 200kW/m²)
           ports_loaded: list or str or int, optional if mode not 'average'
               label of divertor modules provided in heat_flux array for plots; 
               int of port number for single divertor data and list of 
               port numbers for heat flux from multiple divertor modules; #
               gets renamed if a mean heat flux pattern is used (mode 'average')
               (OPTIONAL: default is None, i.e. label will be 'w_s')
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           mean_peaking_factor: float or numpy array
               mean peaking factor in a shape that depends on the mode (see NOTES)
           q_max: float or numpy array
               peak heat flux used for normalizatin in a shape that depends on the mode (see NOTES)
       NOTES
       -----
           The shape of the results varies depending on the dimension of the input
               * 2D: singel divertor modules heat flux
               * 3D: heat flux from multiple divertor modules
           and the mode to derive q_max ('module', 'average', 'finger'):
               * '2D' + 'module' or 'average' --> one value for total_wetted_area and q_max
               * '3D' + 'average' --> 1D numpy arrays with two values for total_wetted_area and q_max (upper and lower divertors)
               * '3D' + 'module' --> 1D numpy arays with a value for each torus module (first dimension of heat_flux)
               * '2D' + 'finger' --> 1D numpy arays with a value for each divertor finger
               * '3D' + 'finger' --> 2D numpy arays with a value for each torus module and each divertor finger
    '''
    #check input
    heat_flux_dim = len(np.shape(heat_flux))
    if mode == 'average' and ports_loaded == None and heat_flux_dim>2:
        raise Exception("derive_peaking_factor_per_module: ports must be specified in average mode since V3.3.2")
    elif mode == 'average' and heat_flux_dim>2:
        try:
            llen=len(ports_loaded)
        except:
            raise Exception("derive_peaking_factor_per_module: each divertor need a description to calcualte proper the wetted area!")
        else:
            if llen!=len(heat_flux):
                raise Exception("derive_peaking_factor_per_module: number of given divertors and number of descriptions does not match!")
    # prepare mapping and finger information
    finger_dic = read_finger_info(verbose=verbose-1)
    finger_ID = finger_dic['ID']
    profile_no = mapping['Finger_ID'][0]
    
    # find profile IDs of central profiles on each finger
    central_profiles_on_finger = []
    is_central_profile = []
    for i_finger in range(len(finger_ID)):
        n_profiles = finger_dic['n_profiles'][i_finger]
        i_profile_start = n_profiles//2 - profile_average_range//2 -1
        central_profiles = i_finger*100 + np.arange(i_profile_start, i_profile_start+profile_average_range)
        central_profiles_on_finger.append(central_profiles)
        is_central_profile.append( np.logical_or.reduce([profile_no == centre_profile for centre_profile in central_profiles]) )
    central_profiles_on_finger = np.array(central_profiles_on_finger)
    
    if np.nanmin(heat_flux) < 0:
        heat_flux[heat_flux<noise_threshold] = 0
        if verbose>0:
            print('derive_peaking_factor_per_module: set heat_flux < {0:.1f}kW/m² to 0'.format(noise_threshold/1E3))
                
    # reduce dimension of heat_flux if in 'average' mode
    if heat_flux_dim == 2 and mode == 'average':
        mode = 'module'
    elif heat_flux_dim == 3 and mode == 'average':
#        heat_flux = np.nanmean(heat_flux, axis=0)
        ## sort the divertors
        updiv=[]
        downdiv=[]
        for i in range(len(ports_loaded)):
            # entries in the array/list are either int or str or even float
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                ## what can it be? 'AEFXX'? But what about OP2 with the A or K ports? Still be 3 letters
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        heat_flux=np.array([np.nanmean(np.asarray(updiv),axis=0),np.nanmean(np.asarray(downdiv),axis=0)])
        del downdiv,updiv
#        heat_flux_dim = 3
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
        mode = 'module'
        if verbose>0:
            print('derive_peaking_factor_per_module: averaged 3D heat flux array over first dimension')
            
    if heat_flux_dim==3:
        # assume dimensions: toroidal index (camera ports), row, column
        n_ports = np.shape(heat_flux)[0]#, n_rows, n_cols
        if verbose>0:
            print('derive_peaking_factor_per_module: deriving wetted area on {0} divertor modules in {1} mode...'.format(n_ports, mode))
        # derive q_max for normalization of integral
        if q_max is None:
            # derive q_max on every finger
            q_max_on_finger = []
            for i_finger in range(len(finger_ID)):
                q_max_on_finger.append([np.nanmax(h[is_central_profile[i_finger]]) for h in heat_flux])
            q_max_on_finger = np.array(q_max_on_finger)
            q_max_on_finger[q_max_on_finger==0] = 1
            if mode == 'module':
                # one value per torus half module
                q_max = np.nanmax(q_max_on_finger, axis=0)
            elif mode == 'finger':
                # one value per finger in each torus half module
                q_max = q_max_on_finger
            q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=np.zeros([n_ports])
        finger_strikeline_width = np.zeros([len(finger_ID), n_ports])
        strikeline_int = np.zeros([len(finger_ID), n_ports])
        for i_finger in range(len(finger_ID)):
            # initialize temporary line integral for each module
            central_line_integral = np.zeros(n_ports)
            # integrate over each central profile and average    
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
#                s = mapping['s'][ij_profile]
                h = heat_flux[:,ij_profile[0],ij_profile[1]]
                hh=[]
                for ele in h:
                    hh=np.append(hh,np.mean(ele[np.where(ele>0)]))
                central_line_integral += np.nan_to_num(hh)#np.mean(h[:][np.where(h[:]>0)]))#np.trapz(h, x=s, axis=1) )            
            # complete averaging process
            central_line_integral = central_line_integral / profile_average_range
#            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*max(s))*1
            # normalize by q_max and multiply with width of finger
            strikeline_int[i_finger,:] = central_line_integral
            if mode == 'module':
                finger_strikeline_width[i_finger,:] = q_max / central_line_integral #/ q_max #* finger_dic['width'][i_finger]                
            elif mode == 'finger':
                if np.min(q_max[i_finger] / central_line_integral) < 1:
                    print("here comes something strange", q_max[i_finger], central_line_integral, np.shape(h))
                finger_strikeline_width[i_finger,:] = q_max[i_finger] / central_line_integral #/ q_max[i_finger] #* finger_dic['width'][i_finger]                                    
        
    elif heat_flux_dim==2:
        # assume dimensions: row, column
        if verbose>0:
            print('derive_peaking_factor_per_module: deriving peaking factor on single divertor module in {0} mode...'.format(mode))
        # derive q_max for normalization of integral
        if q_max is None:
            if mode == 'average' or mode == 'module':
                # one value
                q_max = np.nanmax(heat_flux[np.logical_or.reduce(is_central_profile)])
            elif mode == 'finger':
                # one value per finger
                q_max = []
                for i_finger in range(len(finger_ID)):
                    q_max.append( np.nanmax(heat_flux[is_central_profile[i_finger]]) )
                q_max = np.array(q_max)
                q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=0
        finger_strikeline_width = np.zeros([len(finger_ID)])
        strikeline_int = np.zeros([len(finger_ID)])
        for i_finger in range(len(finger_ID)):
            # integrate over each central profile and average
            central_line_integral = 0
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
#                s = mapping['s'][ij_profile]            
                h = heat_flux[ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num(np.mean(h[np.where(h>0)]))#np.trapz(h, x=s, axis=0) )
            central_line_integral = central_line_integral / profile_average_range
#            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*s)*1
            strikeline_int[i_finger] = central_line_integral
            if mode == 'average' or mode == 'module':
                finger_strikeline_width[i_finger] = q_max / central_line_integral   #* finger_dic['width'][i_finger]
            elif mode == 'finger':
                if q_max[i_finger] / central_line_integral < 1:
                    print("here comes something strange", q_max[i_finger], central_line_integral)
                finger_strikeline_width[i_finger] = q_max[i_finger] / central_line_integral   #* finger_dic['width'][i_finger]
                
    
    # merge half-fingers of TM5 and TM6
    if np.any(finger_dic['finger_part']):
        if verbose > 0:
            print('derive_peaking_factor_per_module: merge wetted area on half fingers of TM05 and TM06')
        new_finger_ID = np.copy(finger_ID)
        # scan backwards over fingers, merge and delete second finger halfs
        for i_finger in finger_ID[:0:-1]:
            if finger_dic['finger_part'][i_finger]:
                new_finger_ID = np.delete(new_finger_ID, i_finger)
                if heat_flux_dim==3 and mode != 'average':
                    finger_strikeline_width[i_finger-1,:] = finger_strikeline_width[i_finger-1,:] + finger_strikeline_width[i_finger,:] 
                    strikeline_int[i_finger-1,:] = strikeline_int[i_finger-1,:] + strikeline_int[i_finger,:] 
                else:
                    finger_strikeline_width[i_finger-1] = finger_strikeline_width[i_finger-1] + finger_strikeline_width[i_finger] 
                    strikeline_int[i_finger-1] = strikeline_int[i_finger-1] + strikeline_int[i_finger] 
                finger_strikeline_width = np.delete(finger_strikeline_width, i_finger, axis=0)
                strikeline_int=np.delete(strikeline_int, i_finger, axis=0)
                if mode == 'finger' and heat_flux_dim==3:
                    q_max[i_finger-1,:] = np.maximum(q_max[i_finger-1,:], q_max[i_finger,:])
                    q_max = np.delete(q_max, i_finger, axis=0)
                elif mode == 'finger' and heat_flux_dim==2:
                    q_max[i_finger-1] = np.maximum(q_max[i_finger-1], q_max[i_finger])
                    q_max = np.delete(q_max, i_finger, axis=0)
    
    # sum up
    # 'average' mode: sum all fingers over all torus modules --> wetted area of all divertors
    #                divide by n_ports --> get average wetted area per divertor
    # 'module' mode:  in each torus module sum over wetted area on all fingers 
    #                --> individual wetted areas per divertor
    # 'finger' mode: do not sum, since each finger was normalized with a differen q_max
    #                --> individual wetted areas per finger
    # if only one divertors heat flux is given, proceed as in local mode
    if mode == 'finger':
        peaking_factor = finger_strikeline_width
    else:
        Weights=np.nan_to_num(strikeline_int/np.sum(strikeline_int,axis=0))
        #deal with unloaded parts
        inf_pos=np.where(np.isinf(finger_strikeline_width))
        finger_strikeline_width[inf_pos] = 0
        Weights[inf_pos] = 0
#        print(Weights)
#        print(finger_strikeline_width)
        WS=np.sum(Weights,axis=0)
        bla=np.where(WS==0)[0]
        for b in bla:
            Weights[:,b]=Weights[:,b]+1
        peaking_factor = np.average(finger_strikeline_width,axis=0,weights=Weights)

    return peaking_factor, q_max

1139
def derive_wetted_area_per_module(heat_flux, mapping, mode='average', q_max=None,
1140
1141
                                  profile_average_range=3, noise_threshold=2E5,
                                  ports_loaded=None, plot_it=False, verbose=0):
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
    ''' Derive wetted area of heat flux array by integrating the total power load
        and dividing with a peak heat flux value.
        The peak heat flux value is either:
            1) the maximum within each divertor finger (mode='finger')
            2) the maximum of a whole divertor module (mode='module')
            3) the maximum of the mean divertor averaged toroidally (mode='average').
        Mode average is default. In case the input heat flux has only 2 dimensions 
        (from one divertor), mode 'average' and 'module' result in the same.
        Returned are the wetted area(s) and the corresponding q_max value(s).
    
       INPUT
       -----
           heat_flux: numpy array
               array of heat fluxes from THEODOR on the profiles defined 
               in the IR mapping; can be 2D (one divertor), or 3D (multiple divertor modules)
           mapping: dictionary
               IR profile mapping information as returned by 
               downloadversionIRdara.download_heatflux_mapping_reference();
               minimum necessary keys are 'finger_ID' and 's'
           mode: str, optional
               label to identify the normalization mode, either 
               'module' (normalize by peak heat flux per torus module),
               'average' (normalize by peak heat flux in the toroidally mean heat flux pattern),
               'finger' (normalize by peak heat flux per finger in each torus module)
               (OPTIONAL: default is 'average')
           q_max: float or numpy array, optional
               either single peak heat flux value or a peak heat flux for each 
               divertor module or each finger (depends on mode)
               (OPTIONAL: default is None, i.e. derived based on mode)
           profile_average_range: int, optional
               number of central profiles on each finger to average the 
               integral heat flux on (this avoids hot leading edges and shadowed edges)
               (OPTIONAL: default is 3 profiles)
1175
1176
1177
           noise_threshold: float, optional
               minimum heat flux level to crop heat_flux to, if heat flux has negative values
               (OPTIONAL: default is 200kW/m²)
1178
           ports_loaded: list or str or int, optional if mode not 'average'
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
               label of divertor modules provided in heat_flux array for plots; 
               int of port number for single divertor data and list of 
               port numbers for heat flux from multiple divertor modules; #
               gets renamed if a mean heat flux pattern is used (mode 'average')
               (OPTIONAL: default is None, i.e. label will be 'A_w')
           plot_it: bool, optional
               switch of whether to plot intermediate results or not
               (OPTIONAL: deafult is NOT to plot)
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           total_wetted_area: float or numpy array
               wetted area in a shape that depends on the mode (see NOTES)
           q_max: float or numpy array
               peak heat flux used for normalizatin in a shape that depends on the mode (see NOTES)
       NOTES
       -----
           The shape of the results varies depending on the dimension of the input
               * 2D: singel divertor modules heat flux
               * 3D: heat flux from multiple divertor modules
           and the mode to derive q_max ('module', 'average', 'finger'):
               * '2D' + 'module' or 'average' --> one value for total_wetted_area and q_max
1203
               * '3D' + 'average' --> 1D numpy arrays with two values for total_wetted_area and q_max (upper and lower divertors)
1204
1205
1206
1207
               * '3D' + 'module' --> 1D numpy arays with a value for each torus module (first dimension of heat_flux)
               * '2D' + 'finger' --> 1D numpy arays with a value for each divertor finger
               * '3D' + 'finger' --> 2D numpy arays with a value for each torus module and each divertor finger
    '''
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    #check input
    heat_flux_dim = len(np.shape(heat_flux))
    if mode == 'average' and ports_loaded == None and heat_flux_dim>2:
        raise Exception("derive_wetted_area_per_module: ports must be specified in average mode since V3.3.2")
    elif mode == 'average' and heat_flux_dim>2:
        try:
            llen=len(ports_loaded)
        except:
            raise Exception("derive_wetted_area_per_module: each divertor need a description to calcualte proper the wetted area!")
        else:
            if llen!=len(heat_flux):
                raise Exception("derive_wetted_area_per_module: number of given divertors and number of descriptions does not match!")
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
    # prepare mapping and finger information
    finger_dic = read_finger_info(verbose=verbose-1)
    finger_ID = finger_dic['ID']
    profile_no = mapping['Finger_ID'][0]
    
    # find profile IDs of central profiles on each finger
    central_profiles_on_finger = []
    is_central_profile = []
    for i_finger in range(len(finger_ID)):
        n_profiles = finger_dic['n_profiles'][i_finger]
        i_profile_start = n_profiles//2 - profile_average_range//2 -1
        central_profiles = i_finger*100 + np.arange(i_profile_start, i_profile_start+profile_average_range)
        central_profiles_on_finger.append(central_profiles)
        is_central_profile.append( np.logical_or.reduce([profile_no == centre_profile for centre_profile in central_profiles]) )
    central_profiles_on_finger = np.array(central_profiles_on_finger)
    
1236
1237
1238
1239
1240
    if np.nanmin(heat_flux) < 0:
        heat_flux[heat_flux<noise_threshold] = 0
        if verbose>0:
            print('derive_wetted_area_per_module: set heat_flux < {0:.1f}kW/m² to 0'.format(noise_threshold/1E3))
            
1241
    
1242
1243
1244
1245
    # reduce dimension of heat_flux if in 'average' mode
    if heat_flux_dim == 2 and mode == 'average':
        mode = 'module'
    elif heat_flux_dim == 3 and mode == 'average':
1246
1247
#        heat_flux = np.nanmean(heat_flux, axis=0)
        ## sort the divertors
1248
        updiv=[]
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        downdiv=[]
        for i in range(len(ports_loaded)):
            # entries in the array/list are either int or str or even float
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                ## what can it be? 'AEFXX'? But what about OP2 with the A or K ports? Still be 3 letters
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        heat_flux=np.array([np.nanmean(np.asarray(updiv),axis=0),np.nanmean(np.asarray(downdiv),axis=0)])
        del downdiv,updiv
#        heat_flux_dim = 3
1264
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
1265
        mode = 'module'
1266
1267
        if verbose>0:
            print('derive_wetted_area_per_module: averaged 3D heat flux array over first dimension')
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        if plot_it:
            fig,ax=plt.subplots(1,2)
            ax[0].imshow(heat_flux[0]/1e6,vmin=0,vmax=5)
            ax[1].imshow(heat_flux[1]/1e6,vmin=0,vmax=5)
    elif heat_flux_dim == 3 and mode == 'average_central_max':
        ## assuming that the strike lines on each divertor are shifted a little bit radially to each other, shift the profiles so that maximimas agree in position
        # if not p max is lower and the strike-line and wetted area would to too large.        
        ## sort the divertors
        updiv=[]
        downdiv=[]
        for i in range(len(ports_loaded)):
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        dummyup=updiv[0].copy()
        for i in range(1,len(updiv)):            
            for j in range(len(finger_ID)):                
                for k in range(finger_dic['n_profiles'][j]):
                    loc=np.where(mapping['Finger_ID'][0]==j*100+k)
                    line1=updiv[0][loc]
                    line2=updiv[i][loc]
                    if np.argmax(line1)!=0 and np.argmax(line2)!=0:
                        pmax_div=np.argmax(line1)-np.argmax(line2)
                        if pmax_div<0:
                            pstart=0
                            pend=len(loc[0])+pmax_div
                        else:
                            pstart=pmax_div
                            pend=len(loc[0])-pmax_div
                    else:
                        pmax_div=0
                        pstart=0
                        pend=len(loc[0])
#                    print(pend,max(loc[0]),pmax_div,np.shape(dummyup),max(loc[0]),max(loc[1]))
                    for y in range(pstart,pend):
                        dummyup[loc[0][y],loc[1][0]]=dummyup[loc[0][y],loc[1][0]]+updiv[i][loc[0][y]+pmax_div,loc[1][0]]
        dummyup=dummyup/len(updiv)
        dummydwn=downdiv[0].copy()
        for i in range(1,len(downdiv)):            
            for j in range(len(finger_ID)):                
                for k in range(finger_dic['n_profiles'][j]):
                    loc=np.where(mapping['Finger_ID'][0]==j*100+k)
                    line1=downdiv[0][loc]
                    line2=downdiv[i][loc]
                    if np.argmax(line1)!=0 and np.argmax(line2)!=0:
                        pmax_div=np.argmax(line1)-np.argmax(line2)
                        if pmax_div<0:
                            pstart=0
                            pend=len(loc[0])+pmax_div
                        else:
                            pstart=pmax_div
                            pend=len(loc[0])-pmax_div
                    else:
                        pmax_div = 0
                        pstart  =0
                        pend=len(loc[0])
                    for y in range(pstart,pend):
                        dummydwn[loc[0][y],loc[1][0]] = dummydwn[loc[0][y],loc[1][0]]+downdiv[i][loc[0][y]+pmax_div,loc[1][0]]
        dummydwn = dummydwn/len(downdiv)
        
        heat_flux = np.array([dummyup,dummydwn])
        heat_flux = np.nan_to_num(heat_flux)
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
        mode = 'module'
        if plot_it:
            print(np.shape(dummyup),np.shape(dummydwn))
#            plt.figure()
            fig,ax = plt.subplots(2,2)
            ax[0][0].imshow(np.nanmean(np.asarray(updiv), axis=0), vmin=0, vmax=5e6)
            ax[1][0].imshow(dummyup, vmin=0, vmax=5e6)
            ax[0][1].imshow(np.nanmean(np.asarray(downdiv), axis=0),vmin=0,vmax=5e6)
            ax[1][1].imshow(dummydwn,vmin=0,vmax=5e6)
#        print("in development")
1346
1347
    if heat_flux_dim==3:
        # assume dimensions: toroidal index (camera ports), row, column
1348
        n_ports = np.shape(heat_flux)[0]#, n_rows, n_cols
1349
        if verbose>0:
1350
            print('derive_wetted_area_per_module: deriving wetted area on {0} divertor modules in {1} mode...'.format(n_ports, mode))
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
        # derive q_max for normalization of integral
        if q_max is None:
            # derive q_max on every finger
            q_max_on_finger = []
            for i_finger in range(len(finger_ID)):
                q_max_on_finger.append([np.nanmax(h[is_central_profile[i_finger]]) for h in heat_flux])
            q_max_on_finger = np.array(q_max_on_finger)
            q_max_on_finger[q_max_on_finger==0] = 1
            if mode == 'module':
                # one value per torus half module
                q_max = np.nanmax(q_max_on_finger, axis=0)
            elif mode == 'finger':
                # one value per finger in each torus half module
                q_max = q_max_on_finger
            q_max[q_max==0] = 1
        # integrate over profiles
        finger_wetted_area = np.zeros([len(finger_ID), n_ports])
        for i_finger in range(len(finger_ID)):
            # initialize temporary line integral for each module
            central_line_integral = np.zeros(n_ports)
            # integrate over each central profile and average    
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
                s = mapping['s'][ij_profile]
                h = heat_flux[:,ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num( np.trapz(h, x=s, axis=1) )
            # complete averaging process
            central_line_integral = central_line_integral / profile_average_range
            # normalize by q_max and multiply with width of finger
            if mode == 'module':
                finger_wetted_area[i_finger,:] = central_line_integral / q_max * finger_dic['width'][i_finger]
            elif mode == 'finger':
                finger_wetted_area[i_finger,:] = central_line_integral / q_max[i_finger] * finger_dic['width'][i_finger]
            
        # get example profiles and wetted area widths at local maxima
        i_finger_max = np.argmax(q_max_on_finger, axis=0)
        h_max = []
        s_max = []
        width_max = []
        height_max = []
        for i in range(len(i_finger_max)):
            central_profiles = central_profiles_on_finger[i_finger_max[i]]
            h_profiles = [ heat_flux[i][profile_no == cp] for cp in central_profiles ] 
            i_max = np.argmax([np.sum(h) for h in h_profiles])
#            i_max = np.argsort([np.sum(h) for h in h_profiles])[profile_average_range//2]
            h_max.append( h_profiles[ i_max ] )
            s_max.append( mapping['s'][profile_no == central_profiles[i_max]] )
            if mode == 'module':
                width_max.append(np.nan_to_num(np.trapz(h_max[-1], x=s_max[-1]) / q_max[i]))
                height_max.append(q_max[i])
            elif mode == 'finger':
                width_max.append(np.nan_to_num(np.trapz(h_max[-1], x=s_max[-1]) / q_max[i_finger_max[i],i]))
                height_max.append(q_max[i_finger_max[i],i])
        i_samples = [np.argmin(width_max), np.argsort(width_max)[len(width_max)//2], np.argmax(width_max)]
        i_centre = np.argsort(width_max)[len(width_max)//2]
        s_max = [s_max[np.argmin(width_max)], s_max[i_centre], s_max[np.argmax(width_max)]]
        h_max = [h_max[np.argmin(width_max)], h_max[i_centre], h_max[np.argmax(width_max)]]
        height_max = [height_max[np.argmin(width_max)], height_max[i_centre], height_max[np.argmax(width_max)]]
        width_max = [width_max[np.argmin(width_max)], width_max[i_centre], width_max[np.argmax(width_max)]]
        
    elif heat_flux_dim==2:
        # assume dimensions: row, column
        if verbose>0:
1414
            print('derive_wetted_area_per_module: deriving wetted area on single divertor module in {0} mode...'.format(mode))
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
        # derive q_max for normalization of integral
        if q_max is None:
            if mode == 'average' or mode == 'module':
                # one value
                q_max = np.nanmax(heat_flux[np.logical_or.reduce(is_central_profile)])
            elif mode == 'finger':
                # one value per finger
                q_max = []
                for i_finger in range(len(finger_ID)):
                    q_max.append( np.nanmax(heat_flux[is_central_profile[i_finger]]) )
                q_max = np.array(q_max)
                q_max[q_max==0] = 1
        # integrate over profiles
        finger_wetted_area = np.zeros([len(finger_ID)])
        for i_finger in range(len(finger_ID)):
            # integrate over each central profile and average
            central_line_integral = 0
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
                s = mapping['s'][ij_profile]            
                h = heat_flux[ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num( np.trapz(h, x=s, axis=0) )
            central_line_integral = central_line_integral / profile_average_range
1438
            if mode in ('average','module'):
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
                finger_wetted_area[i_finger] = central_line_integral / q_max * finger_dic['width'][i_finger]
            elif mode == 'finger':
                finger_wetted_area[i_finger] = central_line_integral / q_max[i_finger] * finger_dic['width'][i_finger]
        
        # get example profiles and wetted area widths at local maxima
        i_samples = [np.nanargmin(finger_wetted_area), np.argsort(finger_wetted_area)[len(finger_wetted_area)//2], np.nanargmax(finger_wetted_area)]
        h_max = []
        s_max = []
        width_max = []
        height_max = []
        for i in range(len(i_samples)):
            central_profiles = central_profiles_on_finger[i_samples[i]]
            h_profiles = [ heat_flux[profile_no == cp] for cp in central_profiles ] 
            i_max = np.argmax([np.sum(h) for h in h_profiles])
            h_max.append( h_profiles[ i_max ] )
            s_max.append( mapping['s'][profile_no == central_profiles[i_max]] )
1455
            if mode in ('module','average'):
1456
1457
1458
1459
1460
1461
1462
1463
1464
                width_max.append(np.nan_to_num(np.trapz(h_max[-1], x=s_max[-1]) / q_max))
                height_max.append(q_max)
            elif mode == 'finger':
                width_max.append(np.nan_to_num(np.trapz(h_max[-1], x=s_max[-1]) / q_max[i_samples[i]]))
                height_max.append(q_max[i_samples[i]])
        
    
    # merge half-fingers of TM5 and TM6
    if np.any(finger_dic['finger_part']):
1465
1466
        if verbose>0:
            print('derive_wetted_area_per_module: merge wetted area on half fingers of TM05 and TM06')
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
        new_finger_ID = np.copy(finger_ID)
        # scan backwards over fingers, merge and delete second finger halfs
        for i_finger in finger_ID[:0:-1]:
            if finger_dic['finger_part'][i_finger]:
                new_finger_ID = np.delete(new_finger_ID, i_finger)
                if heat_flux_dim==3 and mode != 'average':
                    finger_wetted_area[i_finger-1,:] = finger_wetted_area[i_finger-1,:] + finger_wetted_area[i_finger,:] 
                else:
                    finger_wetted_area[i_finger-1] = finger_wetted_area[i_finger-1] + finger_wetted_area[i_finger] 
                finger_wetted_area = np.delete(finger_wetted_area, i_finger, axis=0)
                if mode == 'finger' and heat_flux_dim==3:
                    q_max[i_finger-1,:] = np.maximum(q_max[i_finger-1,:], q_max[i_finger,:])
                    q_max = np.delete(q_max, i_finger, axis=0)
                elif mode == 'finger' and heat_flux_dim==2:
                    q_max[i_finger-1] = np.maximum(q_max[i_finger-1], q_max[i_finger])
                    q_max = np.delete(q_max, i_finger, axis=0)
    
    # sum up
    # 'average' mode: sum all fingers over all torus modules --> wetted area of all divertors
    #                divide by n_ports --> get average wetted area per divertor
    # 'module' mode:  in each torus module sum over wetted area on all fingers 
    #                --> individual wetted areas per divertor
    # 'finger' mode: do not sum, since each finger was normalized with a differen q_max
    #                --> individual wetted areas per finger
    # if only one divertors heat flux is given, proceed as in local mode
    if mode == 'finger':
        total_wetted_area = finger_wetted_area
    else:
        total_wetted_area = np.sum(finger_wetted_area, axis=0)

    # if requested, make some visalization
    if plot_it:
        if ports_loaded is None:
            if heat_flux_dim==3:
                ports_label = ['port index {0}'.format(i) for i in range(n_ports)]
            elif heat_flux_dim==2:
                ports_label = ['A_w']
        elif isinstance(ports_loaded, list) or isinstance(ports_loaded, np.ndarray):
            ports_label = ['module {0} {1}'.format(int(port/10), ['L','U'][port%10]) for port in ports_loaded]
        elif isinstance(ports_loaded, int) or isinstance(ports_loaded, np.int_):
            ports_label = ['module {0} {1}'.format(int(int(ports_loaded)/10), ['L','U'][int(ports_loaded)%10])]
        elif isinstance(ports_loaded, str):
            ports_label = [ports_loaded]
            
        # wetted areas vs fingers
        plt.figure()
        if heat_flux_dim==3 and mode != 'average':
            for i_port in range(n_ports):
                plt.plot(new_finger_ID, finger_wetted_area[:,i_port]*1E4, label=ports_label[i_port])
        elif heat_flux_dim==3 and mode == 'average':
            plt.plot(new_finger_ID, finger_wetted_area*1E4, label='mean heat flux')
        else:
            plt.plot(new_finger_ID, finger_wetted_area*1E4, label=ports_label[0])
        plt.title('normalized with q_max of {0}'.format(mode))
        plt.xlabel('finger no.')
        plt.ylabel('wetted area [cm²]')
        plt.legend()
        plt.show()
        
        # wetted areas vs torus modules
        if heat_flux_dim==3:
            if mode == 'module':
                i_ports = np.arange(n_ports)
                plt.figure()
                plt.plot(i_ports, total_wetted_area*1E2)
                plt.xticks(i_ports, [port[-3:] for port in ports_label], rotation='vertical')
                plt.xlabel('module')
                plt.ylabel('wetted area [dm²]')
                plt.tight_layout()
                plt.show()
        
        # central finger profiles and the rectangle with the same integral
        # (the width represented to contribution to the wetted area)
        plt.figure()
        if heat_flux_dim==3:
            label_str = [ports_label[i] for i in i_samples]
            if mode=='module':
                plt.title('wetted area examples from fingers with max Int[q]\nintegrated on their respective divertor and normalized to a local q_max')
            elif mode == 'average':
                plt.