IR_image_tools.py 81.3 KB
Newer Older
1
2
3
# -*- coding: utf-8 -*-
"""
Created on Wed May  9 14:56:32 2018
4
Version: 3.4.0
5
@author: Holger Niemann, Peter Drewelow, Yu Gao
6
7
8

mainly to clean up the downloadversionIRdata code
Tools for:
9
10
    checking IR images,
    calculate gain and offset again from
11
12
13
14
15
16
    check backgroundframes
    check coldframes
    ...
"""
import numpy as np
import matplotlib.pyplot as plt
17
import matplotlib.patches as patches
18
from IR_config_constants import portcamdict, IRCAMBadPixels_path, parameter_file_path
19
import os
20
import datetime
21
22
#import h5py
#import glob
23

24
25
26
def get_OP_by_time(time_ns=None, shot_no=None, program_str=None):
    '''Derives operation phase (OP) of W7-X based on either:
       a nanosacond time stamp, a MDSplus style shot no. or a program ID.
27
       
28
       IN:
29
          time_ns      - integer of nanosecond time stamp,
30
                         e.g. 1511972727249834301 (OPTIONAL)
31
          shot_no      - integer of MDSplus style shot number,
32
                         e.g. 171207022 (OPTIONAL)
33
          program_str  - string of CoDaQ ArchiveDB style prgram number or date,
34
35
36
37
38
39
40
41
42
43
44
45
46
47
                         e.g. '20171207.022' or '20171207' (OPTIONAL)
       RETURN:
          conn         - MDSplus connection object, to be used in e.g. 1511972727249834301
                         read_MDSplus_image_simple(), read_MDSplus_metadata()
   '''
    # derive operation phase (OP) from time as nanosecond time stamp or string
    if time_ns is not None:
        dateOP = datetime.datetime.utcfromtimestamp(time_ns/1e9)
    elif shot_no is not None:
        dateOP = datetime.datetime.strptime(str(shot_no)[:6], '%y%m%d')
    elif program_str is not None:
        dateOP = datetime.datetime.strptime(program_str[:8], '%Y%m%d')
    else:
        raise Exception('get_OP_by_time: ERROR! neither time, shot no. or program ID provided')
48

49
    if dateOP.year == 2017:
50
51
52
53
54
55
        if dateOP.month > 8 and dateOP.month < 12:
            OP = "OP1.2a"
        elif dateOP.month == 8 and dateOP.day >= 28:
            OP = "OP1.2a"
        elif dateOP.month == 12 and dateOP.day < 8:
            OP = "OP1.2a"
56
        else:
57
            OP = None
58
    elif dateOP.year >= 2018:
59
60
61
        return "OP1.2b"
    elif dateOP.year <= 2016 and dateOP.year >= 2015:
        if (dateOP.year == 2016 and dateOP.month <= 3) or (dateOP.year == 2015 and dateOP.month == 12):
62
            OP = "OP1.1"
63
        else:
64
65
66
67
            OP = None
    return OP

def bestimmtheitsmass_general(data, fit):
68
69
70
71
72
73
74
75
76
77
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
78
79
80
81
82
    R = 0
    if len(fit) == len(data):
        mittel = np.sum(data)/len(data)
        qam = quad_abweich_mittel(fit, mittel)
        R = qam/(qam+quad_abweich(data, fit))
83
    else:
84
        print("bestimmtheitsmass_general: Arrays must have same dimensions")
85
    return R
86

87
def bestimmheitsmass_linear(data, fit, debugmode=False):
88
89
90
91
92
93
94
95
96
97
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
98
99
100
101
102
    R2 = 0
    if len(fit) == len(data):
        mittel_D = np.mean(data)#np.sum(data)/len(data)
        mittel_F = np.mean(fit)
        R2 = quad_abweich_mittel(fit, mittel_D)/quad_abweich_mittel(data, mittel_D)
103
        if debugmode:
104
105
            print(mittel_D, mittel_F, quad_abweich_mittel(fit, mittel_D),
                  quad_abweich_mittel(data, mittel_D), R2)
106
107
108
    else:
        print("bestimmtheitsmass_linear: Arrays must have same dimensions")
    return R2
109
110

def quad_abweich_mittel(data, mittel):
111
112
113
114
115
116
117
118
119
120
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
121
    R = 0
122
    for i in data:
123
        R = R+(i-mittel)**2
124
    return R
125
126

def quad_abweich(data, fit):
127
128
129
130
131
132
133
134
135
136
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
137
138
    R = 0
    if len(fit) == len(data):
139
        for i in range(len(data)):
140
            R = R+(data[i]-fit[i])**2
141
    else:
142
        print("quad_abweich: Arrays must have same dimensions")
143
144
145
    return R

def find_nearest(array, value):
146
147
148
149
150
151
152
153
154
155
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
156
157
158
    #a=array
    a = [x - value for x in array]
    mini = np.min(np.abs(a))
159
160
    try: idx = a.index(mini)
    except: idx = a.index(-mini)
161
    return idx#array[idx]
162
163

def check_coldframe(coldframe, references=None, threshold=0.5, plot_it=False):
164
165
    '''
    return true/false and the quality factor
166
167
168
169
170
171
172
173
174
    
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
175
    '''
176
    shapi = np.shape(coldframe)
177
    ##function  (np.arange(0,768)-384)**(2)/900-50
178
179
180
    datasets = []
    for i in [int(shapi[1]//4), int(shapi[1]//2), int(shapi[1]//4*3)]:
        dataline = coldframe[0:shapi[0], i]
181
        datasets.append(dataline-np.mean(dataline))
182
183
184
185
186
187
    if references == None:
        references = []
        for dat in datasets:
            mini = np.mean(dat[shapi[0]/2-50:shapi[0]/2+50])
            a = (np.mean(dat[0:50])-mini)/(int(shapi[0]/2))**2
            reference = a*(np.arange(0, shapi[0])-int(shapi[0]/2))**(2)+mini
188
            references.append(reference)
189
    bestimmtheit = []
190
191
    if plot_it:
        plt.figure()
192
        plt.imshow(coldframe, vmin=np.mean(coldframe)-500, vmax=np.mean(coldframe)+500)
193
194
        plt.figure()
    for i_dat in range(len(datasets)):
195
196
197
198
199
200
        dat = datasets[i_dat]
        reference = references[i_dat]
        bestimmtheit.append(bestimmtheitsmass_general(dat, reference))
        if plot_it:
            plt.plot(dat, label='data')
            plt.plot(reference, label='reference')
201
202
#            print(int(shapi[0]/2),1*(np.max(datasets[-1])-mini),mini)
            plt.legend()
203
204
    if np.mean(bestimmtheit) > threshold:
        return True, bestimmtheit
205
    else:
206
        return False, bestimmtheit
207

208
def check_coldframe_by_refframe(coldframe, reference_frame, threshold=0.8, plot_it=False):
209
    '''
210
211
212
213
214
215
216
217
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
218
    '''
219
220
221
222
    references = []
    shapi = np.shape(reference_frame)
    for i in [int(shapi[1]//5), int(shapi[1]//2), int(shapi[1]//4*3)]:
        dataline = reference_frame[0:shapi[0], i]
223
        references.append(dataline-np.mean(dataline))
224
225
226
    return check_coldframe(coldframe, references, threshold, plot_it)

def check_backgroundframe(backgroundframe, threshold=50):
227
228
    '''
    return true or false
229
230
231
232
233
234
235
236
237
    
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
238
    '''
239
240
241
242
243
244
    shapi = np.shape(backgroundframe)
    valid = True
    dataset = []
    for i in [int(shapi[1]//4), int(shapi[1]//2), int(shapi[1]//4*3)]:
        referenceline = backgroundframe[0:shapi[0], i]
        meanref = referenceline-np.mean(referenceline)
245
        dataset.append(np.max(meanref)-np.min(meanref))
246
247
248
249
250
    if np.mean(dataset) < threshold:
        valid = False
    return valid, np.mean(dataset)

def read_bad_pixels_from_file(port, shot_no=None, program=None, time_ns=None):
251
252
253
254
255
    '''Reads bad pixels stored in *.bpx file on E4 server.
       Requires one of the optional arguments shot_no or program.
        IN
            port            - integer of port no of camera
            shot_no         - integer of MDSplus style shot number, e.g. 171207022 (OPTIONAL)
256
            program         - string of CoDaQ ArchiveDB style prgram number or date,
257
258
                              e.g. '20171207.022' or '20171207' (OPTIONAL)
        OUT
259
            bad_pixle_list  - list of tuples (row,column) of pixel coordinates
260
                              as integer
261
262
263
264
265
266
267
268
269
        
        INPUT
        ------
        
        RESULT
        ------
        
        NOTE
        ------
270
    '''
271
    if shot_no is not None:
272
273
274
        OP = get_OP_by_time(shot_no=shot_no)
    elif program is not None:
        OP = get_OP_by_time(program_str=program)
275
276
    elif time_ns is not None:
        OP = get_OP_by_time(time_ns=time_ns)
277
278
    else:
        raise Exception('read_bad_pixels_from_file: ERROR! Need either shot no. or program string.')
279

280
281
    port_name = 'AEF{0}'.format(port)
    bad_pixel_file = 'badpixel_{0}.bpx'.format(portcamdict[OP][port_name][6:])
282
    try:
283
        data = np.genfromtxt(IRCAMBadPixels_path+bad_pixel_file, dtype=int)
284
        bad_pixle_list = list(zip(data[:, 1], data[:, 0]))
285
    except:
286
        bad_pixle_list = []
287
288
    return bad_pixle_list

289
def find_outlier_pixels(frame, tolerance=3, plot_it=False):#worry_about_edges=True,
290
    '''
291
    This function finds the bad pixels in a 2D dataset.
292
    Tolerance is the number of standard deviations used for cutoff.
293
294
295
296
297
298
299
300
301
    
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
302
    '''
303
304
305
306
307
308
309
    frame = np.array(frame)#, dtype=int)
    from scipy.ndimage import median_filter
    blurred = median_filter(frame, size=9)
    difference = frame - blurred
    threshold = tolerance*np.std(difference)
    mean = np.mean(difference)
    if plot_it:
310

311
312
        fig = plt.figure()
        fig.suptitle('find_outlier_pixels: histogram')
313
314
        plt.hist(difference.ravel(), 50, log=True, histtype='stepfilled')
        plt.axvline(mean, linewidth=2, color='k', label='mean')
315
316
        x1 = mean - np.std(difference)
        x2 = mean + np.std(difference)
317
        plt.axvspan(x1, x2, linewidth=2, facecolor='g', alpha=0.1, label='standard deviation')
318
319
        x1 = mean - tolerance*np.std(difference)
        x2 = mean + tolerance*np.std(difference)
320
        plt.axvspan(x1, x2, linewidth=2, facecolor='r', alpha=0.1, label='threshold for bad pixel')
321
322
        plt.legend()
        plt.show()
323

324
    #find the hot pixels
325
    bad_pixels = np.transpose(np.nonzero((np.abs(difference) > threshold)))
326
327
    bad_pixels = (bad_pixels).tolist()
    bad_pixels = [tuple(l) for l in bad_pixels]
328

329
330
331
332
    if plot_it:
        plt.figure()
        plt.imshow(frame)
        for i in range(len(bad_pixels)):
333
            plt.scatter(bad_pixels[i][1], bad_pixels[i][0], c='None')
334
        plt.show()
335

336
337
    return bad_pixels

338
def correct_images(images, badpixels, verbose=0):
339
    '''
340
341
342
343
344
345
346
347
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
348
    '''
349
    if type(badpixels) != int:
350
351
        if type(images) == list:
            # return corrected images also as list of 2D arrays
352
            for i in range(len(images)):
353
                images[i] = restore_bad_pixels(images[i], np.invert(badpixels == 1), verbose=verbose-1)
354
355
        else:
            # keep shape
356
            images = restore_bad_pixels(images, np.invert(badpixels == 1), verbose=verbose-1)
357
358
#        for i in range(len(images)):
#            images[i]=(restore_pixels(images[i],np.invert(badpixels==1))).astype(np.float32)
359
        if verbose > 0:
360
            print("correct_images: done")
361
362
    return images

363

364
365
366
367
def restore_bad_pixels(frames, bad_pixel, by_list=True, check_neighbours=True, plot_it=False, verbose=0):
    """Restore bad pixel by interpolation of adjacent pixels. Optionally make
       sure that adjacent pixels are not bad (time consuming). Default is to use
       a list of bad pixels and a for loop. For many bad pixels consider using
368
       the optinal alternative using a bad pixel mask.
369
370
371
372
       
       INPUT
       ------
           frames              - either list of frames as 2D numpy array,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
                                  or 3D numpy array (frame number, n_rows, n_cols),
                                  or 2D numpy array (n_rows, n_cols)
            bad_pixel           - either list of tuples of bad pixel coordinates,
                                  or mask of pixel status (good=True, bad=False)
            by_list             - boolean of whether to use a list and a for loop (True),
                                  or to use a mask of bad pixel and array operations (False)
                                  (OPTIONAL: if not provided, True (list) is default)
            check_neighbours    - boolean of whether to check if neighbours of a bad pixel
                                  are not bad either before computing a mean
                                  (works only in list mode!)
                                  (OPTIONAL: if not provided, check is on)
            plot_it             - boolean to decide whether to plot intermediate
                                  results or not
                                  (OPTIONAL: if not provided, switched off)
            verbose             - integer of feedback level (amount of prints)
388
389
390
                                  (OPTIONAL: if not provided, only ERROR output) 
       RESULT
       ------
391
            frames              - 3D numpy array (frame number, n_rows, n_cols) of
392
                                  corrected frames
393
394
       NOTE
       ------
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    """

    # make sure frames is correctly shaped
    if type(frames) == list:
        frames = np.array(frames)
        frame_shape = 'list'
    else:
        if len(np.shape(frames)) == 2:
            frames = np.array([frames])
            frame_shape = '2D'
        elif len(np.shape(frames)) == 3:
            frame_shape = '3D'
            pass
        else:
            raise Exception('restore_bad_pixels: ERROR! Unexpected shape of frames.')
    frame_dtype = frames.dtype
#    frames = frames.astype(float)
    n_frames, n_rows, n_cols = np.shape(frames)
    if plot_it:
        start_frame = np.copy(frames[0])
    
416
417
418
    # make sure bad pixel are provided as mask and list  
    if type(bad_pixel) is list:
        blist = bad_pixel
419
        bmask = np.ones([n_rows, n_cols], dtype=bool)
420
        for pix in blist:
421
422
423
424
            try:
                bmask[pix] = False
            except Exception as E:
                Warning(E)
425
426
        bmask = np.invert(bmask)
    else:
427
428
        if np.shape(bad_pixel)[0] == n_rows and np.shape(bad_pixel)[1] == n_cols:
            bmask = np.invert(bad_pixel)            
429
430
            x, y = np.where(bmask)
            blist = list(zip(x, y))
431
        else:
432
433
434
435
436
437
            raise Exception('restore_bad_pixels: ERROR! bad_pixel in bad shape {0}'.format(np.shape(bad_pixel)))
            
    if verbose > 0:
        print('restore_bad_pixels: {0} bad pixels to be restored: {1} ... '.format(len(blist), blist[:3]))    
    
    # expand frame by rows and columns of zeros to simplify treatment of edges
438
439
440
441
    frames = np.dstack([np.zeros([n_frames, n_rows], dtype=frame_dtype), frames, np.zeros([n_frames, n_rows], dtype=frame_dtype)])
    frames = np.hstack([np.zeros([n_frames, 1, n_cols+2], dtype=frame_dtype), frames, np.zeros([n_frames, 1, n_cols+2], dtype=frame_dtype)])
    bmask = np.vstack([np.zeros([1, n_cols], dtype=bool), bmask, np.zeros([1, n_cols], dtype=bool)])
    bmask = np.hstack([np.zeros([n_rows+2, 1], dtype=bool), bmask, np.zeros([n_rows+2, 1], dtype=bool)])
442
443
444
    
    # define number of neighbours (up to 4) ina an array of expanded frame size
    n_neighbours = np.ones([n_frames, n_rows+2, n_cols+2])*4
445
446
447
448
449
450
451
452
    n_neighbours[:, 1, :] = 3
    n_neighbours[:, -2, :] = 3
    n_neighbours[:, :, 1] = 3
    n_neighbours[:, :, -2] = 3
    n_neighbours[:, 1, 1] = 2
    n_neighbours[:, 1, -2] = 2
    n_neighbours[:, -2, 1] = 2
    n_neighbours[:, -2, -2] = 2
453
454
455
456
457
458
459
460
461
462
463
    
    if by_list:
        # ===== correct bad pixels using the list of bad pixels =====
        #
        
        for pos in blist:
            # Note:
            # pos points to real frame coordinates, while bmask, n_neighbours have been expanded!
            
            if check_neighbours:
                # takes only neighbours that are not bad
464
                pos_l = np.where(bmask[pos[0]+1,:pos[1]+1] == False)[0]
465
466
467
468
                if len(pos_l) != 0:
                    pos_l = pos_l[-1]
                else: 
                    pos_l = pos[1]+1
469
                pos_r = np.where(bmask[pos[0]+1,pos[1]+1:] == False)[0]
470
471
472
473
                if len(pos_r) != 0:
                    pos_r = pos_r[0] + pos[1]+1
                else: 
                    pos_r = pos[1]+2
474
                pos_t = np.where(bmask[:pos[0]+1,pos[1]+1] == False)[0]
475
476
477
478
                if len(pos_t) != 0:
                    pos_t = pos_t[-1]
                else: 
                    pos_t = pos[0]+1
479
                pos_b = np.where(bmask[pos[0]+1:,pos[1]+1] == False)[0]
480
481
482
483
                if len(pos_b) != 0:
                    pos_b = pos_b[0] + pos[0]+1
                else: 
                    pos_b = pos[0]+2
484
            else:
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
                # insensitive to neighbours being bad as well!
                pos_l = pos[1]
                pos_r = pos[1]+2
                pos_t = pos[0]
                pos_b = pos[0]+2
            average = (frames[:,pos[0]+1,pos_l].astype(float) + 
                       frames[:,pos[0]+1,pos_r].astype(float) + 
                       frames[:,pos_t,pos[1]+1].astype(float) + 
                       frames[:,pos_b,pos[1]+1].astype(float)) / n_neighbours[:,pos[0]+1,pos[1]+1]
            frames[:,pos[0]+1,pos[1]+1] = average.astype(frame_dtype)
        frames = frames[:,1:-1,1:-1]
        
    else:
        # ======= correct bad pixels using the bad pixel mask =======
        #
        # (insensitive to neighbours being bad as well!)
   
        # prepare mask arrays for neighbours by shifting it to left, right, top and bottom
503
504
505
506
        bmask_l = np.hstack([bmask[:, 1:], np.zeros([n_rows+2, 1], dtype=bool)])
        bmask_r = np.hstack([np.zeros([n_rows+2, 1], dtype=bool), bmask[:, :-1]])
        bmask_t = np.vstack([bmask[1:, :], np.zeros([1, n_cols+2], dtype=bool)])
        bmask_b = np.vstack([np.zeros([1, n_cols+2], dtype=bool), bmask[:-1, :]])
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        
    
        # -----------------------------------
        # restore by mask
        #
        frames[:,bmask] = ( (frames[:,bmask_l].astype(float) + 
                             frames[:,bmask_r].astype(float) + 
                             frames[:,bmask_t].astype(float) + 
                             frames[:,bmask_b].astype(float)) / n_neighbours[:,bmask] ).astype(frame_dtype)
        frames = frames[:,1:-1,1:-1]
    
    # plot comparison
    if plot_it:
        plt.figure()
        plt.title('bad pixel correction of first frame')
        m = np.mean(start_frame)
        s = np.std(start_frame)
        plt.imshow(start_frame, vmin=m-s, vmax=m+s)
        plt.colorbar()
        x,y = zip(*blist)
        plt.scatter(y,x, marker='o', s=5, c='r', linewidths=1)
        plt.tight_layout()
        plt.show()

    if frame_shape == 'list':
        frames = list(frames)
    elif frame_shape == '2D' and len(np.shape(frames))==3:
        frames = frames[0]
        
    return frames

538
539

def generate_new_hot_image(cold,reference_cold,reference_hot):
540
    '''
541
542
543
544
545
546
547
548
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
549
    '''
550
    if cold is None or reference_cold is None or reference_hot is None:
551
        raise Exception("generate_new_hot_image: Cannot Calculate new Hot image, if images are missing!")
552
553
554
    else:
        return reference_hot+(cold-reference_cold)
    
555
556
def calculate_gain_offset_image_pix(cold_image,hot_image=None,reference_cold=None,reference_hot=None,verbose=0):    
    '''
557
558
559
560
561
562
563
564
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
565
    '''
566
    if hot_image is None:
567
        hot_image=generate_new_hot_image(cold_image,reference_cold,reference_hot)
568
569
    if verbose>0:
        print("calculate_gain_offset_image_pix: calculate gain and offset")        
570
571
572
573
574
575
576
    Sh_ref =  hot_image[ ( np.int( np.shape(hot_image)[0]   /2  )  ) ][np.int( (np.shape(hot_image)[1]   /2  ) ) ]          
    Sc_ref =  cold_image[ ( np.int(  (np.shape(cold_image)[0])  /2 )  ) ][( np.int(  (np.shape(cold_image)[1])  /2 ) ) ]  
    Gain_rel =  ( Sh_ref  - Sc_ref ) / ( hot_image  - cold_image)    
    Off_h_rel = Sh_ref -   hot_image*Gain_rel
    Off_c_rel = Sc_ref -   cold_image*Gain_rel    
    Offset_rel  = ( Off_h_rel + Off_c_rel ) /2
    return Gain_rel,Offset_rel
577

578
def calculate_gain_offset_image(cold_image,hot_image=None,reference_cold=None,reference_hot=None,verbose=0):    
579
580
581
582
583
584
585
586
587
588
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
589
    if hot_image is None:
590
        hot_image=generate_new_hot_image(cold_image,reference_cold,reference_hot)
591
    if verbose>0:
592
        print("calculate_gain_offset_image: calculate gain and offset")  
593
594
595
    
#    Sh_ref =  hot_image[ ( np.int( np.shape(hot_image)[0]   /2  )  ) ][np.int( (np.shape(hot_image)[1]   /2  ) ) ]          
#    Sc_ref =  cold_image[ ( np.int(  (np.shape(cold_image)[0])  /2 )  ) ][( np.int(  (np.shape(cold_image)[1])  /2 ) ) ]  
596
597
#    print(hot_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])
#    print(cold_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])
598
599
600
601
602
603
    Sh_ref = np.mean(hot_image[( np.int(np.shape(hot_image)[0]/2))-2: (np.int(np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3])    
    Sc_ref = np.mean(cold_image[( np.int(np.shape(cold_image)[0]/2))-2: (np.int(np.shape(cold_image)[0]/2))+3,np.int((np.shape(cold_image)[1]/2))-2:np.int((np.shape(cold_image)[1]/2))+3])    
    difference_image = hot_image  - cold_image
    indexlist = np.where(difference_image==0)
    difference_image[indexlist] = 0.001
    Gain_rel = ( Sh_ref  - Sc_ref ) / ( difference_image)    
604
    Gain_rel[indexlist]=0
605
606
607
608
    Off_h_rel = Sh_ref - hot_image*Gain_rel
    Off_c_rel = Sc_ref - cold_image*Gain_rel    
    Offset_rel = ( Off_h_rel + Off_c_rel ) /2
    return Gain_rel, Offset_rel    
609
610
    
#%% functions from Yu Gao
611
#""" functions by Yu Gao"""
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
#outdated by download_hot_cold_reference in downloadversionIRdata. removed to remove dependency on data on the E4-drive    
#==============================================================================
# def load_ref_images(port, exposuretime, verbose=0):
#     '''
#     load the reference cold and hot frame during calibration from local files.
#     @port: e.g. 'AEF10'
#     @exposuretime: int number.
#     '''
#     cameraname = portcamdict['OP1.2a'][port]
#     foldername = cameraname.split('_')[0] + '_' + cameraname.split('_')[2]
#     scanpath = os.path.join(IRCamRefImagespath, foldername)
#     coldref, hotref = [], []
#     for filename in glob.iglob(scanpath + '\*' + str(int(exposuretime)) + 'us.h5', recursive=True):
#         if 'hot' in filename:
#             if verbose>0:
#                 print('load_ref_images: read from ',filename)
#             with h5py.File(filename, 'r') as h5in:
#                 hotref = h5in[os.path.basename(filename)].value
#         elif 'cold' in filename:
#             if verbose>0:
#                 print('load_ref_images: read from ',filename)
#             with h5py.File(filename, 'r') as h5in:
#                 coldref = h5in[os.path.basename(filename)].value
#     return coldref, hotref
#==============================================================================
637
638

def reconstruct_coldframe (exposuretime, sT, a, bnew, coldref):
639
640
641
642
643
644
645
646
647
648
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
649
650
    cirebuild = a * sT + bnew * exposuretime + coldref
    return cirebuild
651
652
653
654
  
  
#%% other functions
def check_dublicates(array):
655
656
657
658
659
660
661
662
663
664
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
665
666
667
668
669
    a = array
    import collections
    return [item for item, count in collections.Counter(a).items() if count > 1]
    
def check_dublicates_2(array):
670
671
672
673
674
675
676
677
678
679
    """
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
    """
680
681
682
683
684
685
    seen = set()
    uniq = []
    for x in array:
        if x not in seen:
            uniq.append(x)
            seen.add(x)
686
687
    return uniq,seen

688
689
def get_work_list(pipepath,typ="q"):
    """
690
691
692
693
694
695
696
697
    INPUT
    ------
    
    RESULT
    ------
    
    NOTE
    ------
698
699
700
    """
    today=datetime.datetime.now()    
    cam_programs=[]
701
    if typ in ('q','load'):
702
703
704
        f=open(pipepath+str(today.year)+str(today.month)+"_"+typ+"_requests.txt")
    else:
        reasons=[]
705
        f = open(pipepath+"problematic_programs.txt")
706
707
708
    for line in f:
        koline=line.split("\t")
        if len(koline)>1:
709
710
            prog = koline[0]
            if typ in ('q','load'):
711
712
713
714
715
                cam_programs.append((prog,koline[1].split("\n")[0]))    
            else:
                cam_programs.append((prog,koline[1]))                    
                reasons.append(koline[2].split("\n")[0])
    f.close()
716
    if typ in ('q','load'):
717
718
719
720
721
722
        bla=check_dublicates_2(cam_programs)
        cam_programs=bla[0]
        return cam_programs
    else:
        return cam_programs,reasons

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#%% functions regarding wetted area calculation

def read_finger_info(file_name=None, OP='OP1.2b', verbose=0):
    '''Read divertor finger information from file. The referenced fingers are those
       defined in the IR profile mapping, i.e. the target modlues 5 and 6 are
       divided in inner and outer fingers (see 'finger_part' in result dictionary).
    
       INPUT
       -----
           file_name: str, optional
               file name of csv fiel with finger information
               (OPTIONAL: default is None, i.e. decide by OP)
           OP: str, optional
               label of operation phase of interest, e.g. 'OP1.2b'
               (OPTIONAL: default is 'OP1.2b', i.e. load TDU file)
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           finger_dic: dictionary
               dictionary with keys 'ID', 'target', 'target_element','n_profiles', 'width', 'finger_part' (see NOTES)
       NOTES
       -----
           contents of result dictionary:
               * 'ID' numpy array of integers of continuous finger number
               * 'target' list of strings of target identifier ('h_l' horizontal low-iota, 'h_m' horizontal middle part, 'h_h' horizontal high-iota, 'v' vertical)
               * 'target_element' numpy array of integers of target module number (1..9 on horizontal target, 1..3 on vertical target)
               * 'n_profiles' numpy array of integers of number of profiles defined on this finger
               * 'width' numpy array of floats of centre width of finger in meters
               * 'finger_part' numpy array of integers indicating with 0 this is a full finger and with 1 this is the second part of the previous finger
    '''
    if file_name is None:
        # assume OP is given
        if OP.startswith('OP1'):
            file_name='finger_info_TDU.csv'
        elif OP.startswith('OP2'):
            file_name='finger_info_HHF.csv'
    full_path = os.path.join(parameter_file_path, file_name)
    print(full_path)
763
    if verbose > 0:
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        print('read_finger_info: reading from file {0} in {1}'.format(file_name, parameter_file_path))
    if not os.path.isfile(full_path):
        raise Exception('read_finger_info: ERROR! file not found')
    
    finger_dic = {'ID': [],
                  'target': [],
                  'target_element':[],
                  'n_profiles':[],
                  'width':[],
                  'finger_part':[]}
    
    data = np.genfromtxt(full_path, delimiter=';', dtype=(int, "|S3", int, int, float, int))
    for i in range(len(data)):
        finger_dic['ID'].append( data[i][0] )
        finger_dic['target'].append( data[i][1].decode('UTF-8') )
        finger_dic['target_element'].append( data[i][2] )
        finger_dic['n_profiles'].append( data[i][3] )
        finger_dic['width'].append( data[i][4] )
        finger_dic['finger_part'].append( data[i][5] )
    
    finger_dic['ID'] = np.array(finger_dic['ID'])
    finger_dic['target_element'] = np.array(finger_dic['target_element'])
    finger_dic['n_profiles'] = np.array(finger_dic['n_profiles'])
    finger_dic['width'] = np.array(finger_dic['width'])
    finger_dic['finger_part'] = np.array(finger_dic['finger_part'])
    
    return finger_dic


793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
def derive_strike_line_width_per_module(heat_flux, mapping,mode='average', q_max=None,
                                  profile_average_range=3, noise_threshold=2E5,
                                  ports_loaded=None, verbose=0):
    ''' Derive strike-line width of heat flux array by integrating the total power load
        and dividing with a peak heat flux value.
        The peak heat flux value is either:
            1) the maximum within each divertor finger (mode='finger')
            2) the maximum of a whole divertor module (mode='module')
            3) the maximum of the mean divertor averaged toroidally (mode='average').
        Mode average is default. In case the input heat flux has only 2 dimensions 
        (from one divertor), mode 'average' and 'module' result in the same.
        Returned are the strike-line width(s) and the corresponding q_max value(s).
    
       INPUT
       -----
           heat_flux: numpy array
               array of heat fluxes from THEODOR on the profiles defined 
               in the IR mapping; can be 2D (one divertor), or 3D (multiple divertor modules)
           mapping: dictionary
               IR profile mapping information as returned by 
               downloadversionIRdara.download_heatflux_mapping_reference();
               minimum necessary keys are 'finger_ID' and 's'
           mode: str, optional
               label to identify the normalization mode, either 
               'module' (normalize by peak heat flux per torus module),
               'average' (normalize by peak heat flux in the toroidally mean heat flux pattern),
               'finger' (normalize by peak heat flux per finger in each torus module)
               (OPTIONAL: default is 'average')
           q_max: float or numpy array, optional
               either single peak heat flux value or a peak heat flux for each 
               divertor module or each finger (depends on mode)
               (OPTIONAL: default is None, i.e. derived based on mode)
           profile_average_range: int, optional
               number of central profiles on each finger to average the 
               integral heat flux on (this avoids hot leading edges and shadowed edges)
               (OPTIONAL: default is 3 profiles)
           noise_threshold: float, optional
               minimum heat flux level to crop heat_flux to, if heat flux has negative values
               (OPTIONAL: default is 200kW/m²)
           ports_loaded: list or str or int, optional if mode not 'average'
               label of divertor modules provided in heat_flux array for plots; 
               int of port number for single divertor data and list of 
               port numbers for heat flux from multiple divertor modules; #
               gets renamed if a mean heat flux pattern is used (mode 'average')
               (OPTIONAL: default is None, i.e. label will be 'w_s')
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           total_mean_width: float or numpy array
               mean strike-line width in a shape that depends on the mode (see NOTES)
           q_max: float or numpy array
               peak heat flux used for normalizatin in a shape that depends on the mode (see NOTES)
       NOTES
       -----
           The shape of the results varies depending on the dimension of the input
               * 2D: singel divertor modules heat flux
               * 3D: heat flux from multiple divertor modules
           and the mode to derive q_max ('module', 'average', 'finger'):
               * '2D' + 'module' or 'average' --> one value for total_wetted_area and q_max
               * '3D' + 'average' --> 1D numpy arrays with two values for total_wetted_area and q_max (upper and lower divertors)
               * '3D' + 'module' --> 1D numpy arays with a value for each torus module (first dimension of heat_flux)
               * '2D' + 'finger' --> 1D numpy arays with a value for each divertor finger
               * '3D' + 'finger' --> 2D numpy arays with a value for each torus module and each divertor finger
    '''
    #check input
    heat_flux_dim = len(np.shape(heat_flux))
    if mode == 'average' and ports_loaded == None and heat_flux_dim>2:
        raise Exception("derive_strike_line_width_per_module: ports must be specified in average mode since V3.3.2")
    elif mode == 'average' and heat_flux_dim > 2:
        try:
            llen=len(ports_loaded)
        except:
            raise Exception("derive_strike_line_width_per_module: each divertor need a description to calcualte proper the wetted area!")
        else:
            if llen!=len(heat_flux):
                raise Exception("derive_strike_line_width_per_module: number of given divertors and number of descriptions does not match!")
    # prepare mapping and finger information
    finger_dic = read_finger_info(verbose=verbose-1)
    finger_ID = finger_dic['ID']
    profile_no = mapping['Finger_ID'][0]
    
    # find profile IDs of central profiles on each finger
    central_profiles_on_finger = []
    is_central_profile = []
    for i_finger in range(len(finger_ID)):
        n_profiles = finger_dic['n_profiles'][i_finger]
        i_profile_start = n_profiles//2 - profile_average_range//2 -1
        central_profiles = i_finger*100 + np.arange(i_profile_start, i_profile_start+profile_average_range)
        central_profiles_on_finger.append(central_profiles)
        is_central_profile.append(np.logical_or.reduce([profile_no == centre_profile for centre_profile in central_profiles]))
    central_profiles_on_finger = np.array(central_profiles_on_finger)

    if np.nanmin(heat_flux) < 0:
        heat_flux[heat_flux<noise_threshold] = 0
        if verbose>0:
            print('derive_strike_line_width_per_module: set heat_flux < {0:.1f}kW/m² to 0'.format(noise_threshold/1E3))
                
    # reduce dimension of heat_flux if in 'average' mode
    if heat_flux_dim == 2 and mode == 'average':
        mode = 'module'
    elif heat_flux_dim == 3 and mode == 'average':
#        heat_flux = np.nanmean(heat_flux, axis=0)
        ## sort the divertors
        updiv=[]
        downdiv=[]
        for i in range(len(ports_loaded)):
            # entries in the array/list are either int or str or even float
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                ## what can it be? 'AEFXX'? But what about OP2 with the A or K ports? Still be 3 letters
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        heat_flux=np.array([np.nanmean(np.asarray(updiv),axis=0),np.nanmean(np.asarray(downdiv),axis=0)])
        del downdiv,updiv
#        heat_flux_dim = 3
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
        mode = 'module'
        if verbose>0:
            print('derive_strike_line_width_per_module: averaged 3D heat flux array over first dimension')
            
    if heat_flux_dim==3:
        # assume dimensions: toroidal index (camera ports), row, column
        n_ports = np.shape(heat_flux)[0]#, n_rows, n_cols 
        if verbose>0:
            print('derive_strike_line_width_per_module: deriving wetted area on {0} divertor modules in {1} mode...'.format(n_ports, mode))
        # derive q_max for normalization of integral
        if q_max is None:
            # derive q_max on every finger
            q_max_on_finger = []
            for i_finger in range(len(finger_ID)):
                q_max_on_finger.append([np.nanmax(h[is_central_profile[i_finger]]) for h in heat_flux])
            q_max_on_finger = np.array(q_max_on_finger)
            q_max_on_finger[q_max_on_finger==0] = 1
            if mode == 'module':
                # one value per torus half module
                q_max = np.nanmax(q_max_on_finger, axis=0)
            elif mode == 'finger':
                # one value per finger in each torus half module
                q_max = q_max_on_finger
            q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=np.zeros([n_ports])
        finger_strikeline_width = np.zeros([len(finger_ID), n_ports])
        strikeline_int = np.zeros([len(finger_ID), n_ports])
        for i_finger in range(len(finger_ID)):
            # initialize temporary line integral for each module
            central_line_integral = np.zeros(n_ports)
            # integrate over each central profile and average    
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
                s = mapping['s'][ij_profile]
                h = heat_flux[:,ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num( np.trapz(h, x=s, axis=1) )            
            # complete averaging process
            central_line_integral = central_line_integral / profile_average_range
            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*max(s))*1
            # normalize by q_max and multiply with width of finger
            strikeline_int[i_finger,:] = central_line_integral
            if mode == 'module':
                finger_strikeline_width[i_finger,:] = central_line_integral / q_max #* finger_dic['width'][i_finger]                
            elif mode == 'finger':
                finger_strikeline_width[i_finger,:] = central_line_integral / q_max[i_finger] #* finger_dic['width'][i_finger]                                    
        
    elif heat_flux_dim==2:
        # assume dimensions: row, column
        if verbose>0:
            print('derive_strike_line_width_per_module: deriving wetted area on single divertor module in {0} mode...'.format(mode))
        # derive q_max for normalization of integral
        if q_max is None:
            if mode == 'average' or mode == 'module':
                # one value
                q_max = np.nanmax(heat_flux[np.logical_or.reduce(is_central_profile)])
            elif mode == 'finger':
                # one value per finger
                q_max = []
                for i_finger in range(len(finger_ID)):
                    q_max.append( np.nanmax(heat_flux[is_central_profile[i_finger]]) )
                q_max = np.array(q_max)
                q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=0
        finger_strikeline_width = np.zeros([len(finger_ID)])
        strikeline_int = np.zeros([len(finger_ID)])
        for i_finger in range(len(finger_ID)):
            # integrate over each central profile and average
            central_line_integral = 0
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
                s = mapping['s'][ij_profile]            
                h = heat_flux[ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num( np.trapz(h, x=s, axis=0) )
            central_line_integral = central_line_integral / profile_average_range
            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*s)*1
            strikeline_int[i_finger] = central_line_integral
            if mode == 'average' or mode == 'module':
                finger_strikeline_width[i_finger] = central_line_integral / q_max #* finger_dic['width'][i_finger]
            elif mode == 'finger':
                finger_strikeline_width[i_finger] = central_line_integral / q_max[i_finger] #* finger_dic['width'][i_finger]
                
    
    # merge half-fingers of TM5 and TM6
    if np.any(finger_dic['finger_part']):
        if verbose>0:
            print('derive_strike_line_width_per_module: merge wetted area on half fingers of TM05 and TM06')
        new_finger_ID = np.copy(finger_ID)
        # scan backwards over fingers, merge and delete second finger halfs
        for i_finger in finger_ID[:0:-1]:
            if finger_dic['finger_part'][i_finger]:
                new_finger_ID = np.delete(new_finger_ID, i_finger)
                if heat_flux_dim==3 and mode != 'average':
                    finger_strikeline_width[i_finger-1,:] = finger_strikeline_width[i_finger-1,:] + finger_strikeline_width[i_finger,:] 
                    strikeline_int[i_finger-1,:] = strikeline_int[i_finger-1,:] + strikeline_int[i_finger,:] 
                else:
                    finger_strikeline_width[i_finger-1] = finger_strikeline_width[i_finger-1] + finger_strikeline_width[i_finger] 
                    strikeline_int[i_finger-1] = strikeline_int[i_finger-1] + strikeline_int[i_finger] 
                finger_strikeline_width = np.delete(finger_strikeline_width, i_finger, axis=0)
                strikeline_int=np.delete(strikeline_int, i_finger, axis=0)
                if mode == 'finger' and heat_flux_dim==3:
                    q_max[i_finger-1,:] = np.maximum(q_max[i_finger-1,:], q_max[i_finger,:])
                    q_max = np.delete(q_max, i_finger, axis=0)
                elif mode == 'finger' and heat_flux_dim==2:
                    q_max[i_finger-1] = np.maximum(q_max[i_finger-1], q_max[i_finger])
                    q_max = np.delete(q_max, i_finger, axis=0)
    
    # sum up
    # 'average' mode: sum all fingers over all torus modules --> wetted area of all divertors
    #                divide by n_ports --> get average wetted area per divertor
    # 'module' mode:  in each torus module sum over wetted area on all fingers 
    #                --> individual wetted areas per divertor
    # 'finger' mode: do not sum, since each finger was normalized with a differen q_max
    #                --> individual wetted areas per finger
    # if only one divertors heat flux is given, proceed as in local mode
    if mode == 'finger':
        total_mean_width = finger_strikeline_width
    else:
        Weights=np.nan_to_num(strikeline_int/np.sum(strikeline_int,axis=0))
#        print(Weights)
        WS=np.sum(Weights,axis=0)
        bla=np.where(WS==0)[0]
        for b in bla:
            Weights[:,b]=Weights[:,b]+1
        total_mean_width = np.average(finger_strikeline_width,axis=0,weights=Weights)

    return total_mean_width, q_max

def derive_peaking_factor_per_module(heat_flux, mapping,mode='average', q_max=None,
                                  profile_average_range=3, noise_threshold=2E5,
                                  ports_loaded=None, verbose=0):
    ''' Derive peaking of heat flux array by dividing the peak heat flux value 
        with the mean heat flux value the total power load.
        The peak heat flux value is either:
            1) the maximum within each divertor finger (mode='finger')
            2) the maximum of a whole divertor module (mode='module')
            3) the maximum of the mean divertor averaged toroidally (mode='average').
        Mode average is default. In case the input heat flux has only 2 dimensions 
        (from one divertor), mode 'average' and 'module' result in the same.
        Returned are the strike-line width(s) and the corresponding q_max value(s).
    
       INPUT
       -----
           heat_flux: numpy array
               array of heat fluxes from THEODOR on the profiles defined 
               in the IR mapping; can be 2D (one divertor), or 3D (multiple divertor modules)
           mapping: dictionary
               IR profile mapping information as returned by 
               downloadversionIRdara.download_heatflux_mapping_reference();
               minimum necessary keys are 'finger_ID' and 's'
           mode: str, optional
               label to identify the normalization mode, either 
               'module' (normalize by peak heat flux per torus module),
               'average' (normalize by peak heat flux in the toroidally mean heat flux pattern),
               'finger' (normalize by peak heat flux per finger in each torus module)
               (OPTIONAL: default is 'average')
           q_max: float or numpy array, optional
               either single peak heat flux value or a peak heat flux for each 
               divertor module or each finger (depends on mode)
               (OPTIONAL: default is None, i.e. derived based on mode)
           profile_average_range: int, optional
               number of central profiles on each finger to average the 
               integral heat flux on (this avoids hot leading edges and shadowed edges)
               (OPTIONAL: default is 3 profiles)
           noise_threshold: float, optional
               minimum heat flux level to crop heat_flux to, if heat flux has negative values
               (OPTIONAL: default is 200kW/m²)
           ports_loaded: list or str or int, optional if mode not 'average'
               label of divertor modules provided in heat_flux array for plots; 
               int of port number for single divertor data and list of 
               port numbers for heat flux from multiple divertor modules; #
               gets renamed if a mean heat flux pattern is used (mode 'average')
               (OPTIONAL: default is None, i.e. label will be 'w_s')
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           mean_peaking_factor: float or numpy array
               mean peaking factor in a shape that depends on the mode (see NOTES)
           q_max: float or numpy array
               peak heat flux used for normalizatin in a shape that depends on the mode (see NOTES)
       NOTES
       -----
           The shape of the results varies depending on the dimension of the input
               * 2D: singel divertor modules heat flux
               * 3D: heat flux from multiple divertor modules
           and the mode to derive q_max ('module', 'average', 'finger'):
               * '2D' + 'module' or 'average' --> one value for total_wetted_area and q_max
               * '3D' + 'average' --> 1D numpy arrays with two values for total_wetted_area and q_max (upper and lower divertors)
               * '3D' + 'module' --> 1D numpy arays with a value for each torus module (first dimension of heat_flux)
               * '2D' + 'finger' --> 1D numpy arays with a value for each divertor finger
               * '3D' + 'finger' --> 2D numpy arays with a value for each torus module and each divertor finger
    '''
    #check input
    heat_flux_dim = len(np.shape(heat_flux))
    if mode == 'average' and ports_loaded == None and heat_flux_dim>2:
        raise Exception("derive_peaking_factor_per_module: ports must be specified in average mode since V3.3.2")
    elif mode == 'average' and heat_flux_dim>2:
        try:
            llen=len(ports_loaded)
        except:
            raise Exception("derive_peaking_factor_per_module: each divertor need a description to calcualte proper the wetted area!")
        else:
            if llen!=len(heat_flux):
                raise Exception("derive_peaking_factor_per_module: number of given divertors and number of descriptions does not match!")
    # prepare mapping and finger information
    finger_dic = read_finger_info(verbose=verbose-1)
    finger_ID = finger_dic['ID']
    profile_no = mapping['Finger_ID'][0]
    
    # find profile IDs of central profiles on each finger
    central_profiles_on_finger = []
    is_central_profile = []
    for i_finger in range(len(finger_ID)):
        n_profiles = finger_dic['n_profiles'][i_finger]
        i_profile_start = n_profiles//2 - profile_average_range//2 -1
        central_profiles = i_finger*100 + np.arange(i_profile_start, i_profile_start+profile_average_range)
        central_profiles_on_finger.append(central_profiles)
        is_central_profile.append( np.logical_or.reduce([profile_no == centre_profile for centre_profile in central_profiles]) )
    central_profiles_on_finger = np.array(central_profiles_on_finger)
    
    if np.nanmin(heat_flux) < 0:
        heat_flux[heat_flux<noise_threshold] = 0
        if verbose>0:
            print('derive_peaking_factor_per_module: set heat_flux < {0:.1f}kW/m² to 0'.format(noise_threshold/1E3))
                
    # reduce dimension of heat_flux if in 'average' mode
    if heat_flux_dim == 2 and mode == 'average':
        mode = 'module'
    elif heat_flux_dim == 3 and mode == 'average':
#        heat_flux = np.nanmean(heat_flux, axis=0)
        ## sort the divertors
        updiv=[]
        downdiv=[]
        for i in range(len(ports_loaded)):
            # entries in the array/list are either int or str or even float
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                ## what can it be? 'AEFXX'? But what about OP2 with the A or K ports? Still be 3 letters
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        heat_flux=np.array([np.nanmean(np.asarray(updiv),axis=0),np.nanmean(np.asarray(downdiv),axis=0)])
        del downdiv,updiv
#        heat_flux_dim = 3
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
        mode = 'module'
        if verbose>0:
            print('derive_peaking_factor_per_module: averaged 3D heat flux array over first dimension')
            
    if heat_flux_dim==3:
        # assume dimensions: toroidal index (camera ports), row, column
        n_ports = np.shape(heat_flux)[0]#, n_rows, n_cols
        if verbose>0:
            print('derive_peaking_factor_per_module: deriving wetted area on {0} divertor modules in {1} mode...'.format(n_ports, mode))
        # derive q_max for normalization of integral
        if q_max is None:
            # derive q_max on every finger
            q_max_on_finger = []
            for i_finger in range(len(finger_ID)):
                q_max_on_finger.append([np.nanmax(h[is_central_profile[i_finger]]) for h in heat_flux])
            q_max_on_finger = np.array(q_max_on_finger)
            q_max_on_finger[q_max_on_finger==0] = 1
            if mode == 'module':
                # one value per torus half module
                q_max = np.nanmax(q_max_on_finger, axis=0)
            elif mode == 'finger':
                # one value per finger in each torus half module
                q_max = q_max_on_finger
            q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=np.zeros([n_ports])
        finger_strikeline_width = np.zeros([len(finger_ID), n_ports])
        strikeline_int = np.zeros([len(finger_ID), n_ports])
        for i_finger in range(len(finger_ID)):
            # initialize temporary line integral for each module
            central_line_integral = np.zeros(n_ports)
            # integrate over each central profile and average    
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
#                s = mapping['s'][ij_profile]
                h = heat_flux[:,ij_profile[0],ij_profile[1]]
                hh=[]
                for ele in h:
                    hh=np.append(hh,np.mean(ele[np.where(ele>0)]))
                central_line_integral += np.nan_to_num(hh)#np.mean(h[:][np.where(h[:]>0)]))#np.trapz(h, x=s, axis=1) )            
            # complete averaging process
            central_line_integral = central_line_integral / profile_average_range
#            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*max(s))*1
            # normalize by q_max and multiply with width of finger
            strikeline_int[i_finger,:] = central_line_integral
            if mode == 'module':
                finger_strikeline_width[i_finger,:] = q_max / central_line_integral #/ q_max #* finger_dic['width'][i_finger]                
            elif mode == 'finger':
                if np.min(q_max[i_finger] / central_line_integral) < 1:
                    print("here comes something strange", q_max[i_finger], central_line_integral, np.shape(h))
                finger_strikeline_width[i_finger,:] = q_max[i_finger] / central_line_integral #/ q_max[i_finger] #* finger_dic['width'][i_finger]                                    
        
    elif heat_flux_dim==2:
        # assume dimensions: row, column
        if verbose>0:
            print('derive_peaking_factor_per_module: deriving peaking factor on single divertor module in {0} mode...'.format(mode))
        # derive q_max for normalization of integral
        if q_max is None:
            if mode == 'average' or mode == 'module':
                # one value
                q_max = np.nanmax(heat_flux[np.logical_or.reduce(is_central_profile)])
            elif mode == 'finger':
                # one value per finger
                q_max = []
                for i_finger in range(len(finger_ID)):
                    q_max.append( np.nanmax(heat_flux[is_central_profile[i_finger]]) )
                q_max = np.array(q_max)
                q_max[q_max==0] = 1
        # integrate over profiles
#        goodcounter=0
        finger_strikeline_width = np.zeros([len(finger_ID)])
        strikeline_int = np.zeros([len(finger_ID)])
        for i_finger in range(len(finger_ID)):
            # integrate over each central profile and average
            central_line_integral = 0
            for i_profile in central_profiles_on_finger[i_finger]:
                ij_profile = np.where(profile_no==i_profile)
#                s = mapping['s'][ij_profile]            
                h = heat_flux[ij_profile[0],ij_profile[1]]
                central_line_integral += np.nan_to_num(np.mean(h[np.where(h>0)]))#np.trapz(h, x=s, axis=0) )
            central_line_integral = central_line_integral / profile_average_range
#            central_line_integral = central_line_integral *((central_line_integral>noise_threshold*max(s))*1)
#            goodcounter+=(central_line_integral>noise_threshold*s)*1
            strikeline_int[i_finger] = central_line_integral
            if mode == 'average' or mode == 'module':
                finger_strikeline_width[i_finger] = q_max / central_line_integral   #* finger_dic['width'][i_finger]
            elif mode == 'finger':
                if q_max[i_finger] / central_line_integral < 1:
                    print("here comes something strange", q_max[i_finger], central_line_integral)
                finger_strikeline_width[i_finger] = q_max[i_finger] / central_line_integral   #* finger_dic['width'][i_finger]
                
    
    # merge half-fingers of TM5 and TM6
    if np.any(finger_dic['finger_part']):
        if verbose > 0:
            print('derive_peaking_factor_per_module: merge wetted area on half fingers of TM05 and TM06')
        new_finger_ID = np.copy(finger_ID)
        # scan backwards over fingers, merge and delete second finger halfs
        for i_finger in finger_ID[:0:-1]:
            if finger_dic['finger_part'][i_finger]:
                new_finger_ID = np.delete(new_finger_ID, i_finger)
                if heat_flux_dim==3 and mode != 'average':
                    finger_strikeline_width[i_finger-1,:] = finger_strikeline_width[i_finger-1,:] + finger_strikeline_width[i_finger,:] 
                    strikeline_int[i_finger-1,:] = strikeline_int[i_finger-1,:] + strikeline_int[i_finger,:] 
                else:
                    finger_strikeline_width[i_finger-1] = finger_strikeline_width[i_finger-1] + finger_strikeline_width[i_finger] 
                    strikeline_int[i_finger-1] = strikeline_int[i_finger-1] + strikeline_int[i_finger] 
                finger_strikeline_width = np.delete(finger_strikeline_width, i_finger, axis=0)
                strikeline_int=np.delete(strikeline_int, i_finger, axis=0)
                if mode == 'finger' and heat_flux_dim==3:
                    q_max[i_finger-1,:] = np.maximum(q_max[i_finger-1,:], q_max[i_finger,:])
                    q_max = np.delete(q_max, i_finger, axis=0)
                elif mode == 'finger' and heat_flux_dim==2:
                    q_max[i_finger-1] = np.maximum(q_max[i_finger-1], q_max[i_finger])
                    q_max = np.delete(q_max, i_finger, axis=0)
    
    # sum up
    # 'average' mode: sum all fingers over all torus modules --> wetted area of all divertors
    #                divide by n_ports --> get average wetted area per divertor
    # 'module' mode:  in each torus module sum over wetted area on all fingers 
    #                --> individual wetted areas per divertor
    # 'finger' mode: do not sum, since each finger was normalized with a differen q_max
    #                --> individual wetted areas per finger
    # if only one divertors heat flux is given, proceed as in local mode
    if mode == 'finger':
        peaking_factor = finger_strikeline_width
    else:
        Weights=np.nan_to_num(strikeline_int/np.sum(strikeline_int,axis=0))
        #deal with unloaded parts
        inf_pos=np.where(np.isinf(finger_strikeline_width))
        finger_strikeline_width[inf_pos] = 0
        Weights[inf_pos] = 0
#        print(Weights)
#        print(finger_strikeline_width)
        WS=np.sum(Weights,axis=0)
        bla=np.where(WS==0)[0]
        for b in bla:
            Weights[:,b]=Weights[:,b]+1
        peaking_factor = np.average(finger_strikeline_width,axis=0,weights=Weights)

    return peaking_factor, q_max

1311
def derive_wetted_area_per_module(heat_flux, mapping, mode='average', q_max=None,
1312
1313
                                  profile_average_range=3, noise_threshold=2E5,
                                  ports_loaded=None, plot_it=False, verbose=0):
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    ''' Derive wetted area of heat flux array by integrating the total power load
        and dividing with a peak heat flux value.
        The peak heat flux value is either:
            1) the maximum within each divertor finger (mode='finger')
            2) the maximum of a whole divertor module (mode='module')
            3) the maximum of the mean divertor averaged toroidally (mode='average').
        Mode average is default. In case the input heat flux has only 2 dimensions 
        (from one divertor), mode 'average' and 'module' result in the same.
        Returned are the wetted area(s) and the corresponding q_max value(s).
    
       INPUT
       -----
           heat_flux: numpy array
               array of heat fluxes from THEODOR on the profiles defined 
               in the IR mapping; can be 2D (one divertor), or 3D (multiple divertor modules)
           mapping: dictionary
               IR profile mapping information as returned by 
               downloadversionIRdara.download_heatflux_mapping_reference();
               minimum necessary keys are 'finger_ID' and 's'
           mode: str, optional
               label to identify the normalization mode, either 
               'module' (normalize by peak heat flux per torus module),
               'average' (normalize by peak heat flux in the toroidally mean heat flux pattern),
               'finger' (normalize by peak heat flux per finger in each torus module)
               (OPTIONAL: default is 'average')
           q_max: float or numpy array, optional
               either single peak heat flux value or a peak heat flux for each 
               divertor module or each finger (depends on mode)
               (OPTIONAL: default is None, i.e. derived based on mode)
           profile_average_range: int, optional
               number of central profiles on each finger to average the 
               integral heat flux on (this avoids hot leading edges and shadowed edges)
               (OPTIONAL: default is 3 profiles)
1347
1348
1349
           noise_threshold: float, optional
               minimum heat flux level to crop heat_flux to, if heat flux has negative values
               (OPTIONAL: default is 200kW/m²)
1350
           ports_loaded: list or str or int, optional if mode not 'average'
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
               label of divertor modules provided in heat_flux array for plots; 
               int of port number for single divertor data and list of 
               port numbers for heat flux from multiple divertor modules; #
               gets renamed if a mean heat flux pattern is used (mode 'average')
               (OPTIONAL: default is None, i.e. label will be 'A_w')
           plot_it: bool, optional
               switch of whether to plot intermediate results or not
               (OPTIONAL: deafult is NOT to plot)
           verbose: integer, optional
               feedback level (details of print messages)
               (OPTIONAL: if not provided, only ERROR output)
       RESULT
       ------
           total_wetted_area: float or numpy array
               wetted area in a shape that depends on the mode (see NOTES)
1366
               in average it is (upper,lower)
1367
1368
1369
1370
1371
1372
1373
1374
1375
           q_max: float or numpy array
               peak heat flux used for normalizatin in a shape that depends on the mode (see NOTES)
       NOTES
       -----
           The shape of the results varies depending on the dimension of the input
               * 2D: singel divertor modules heat flux
               * 3D: heat flux from multiple divertor modules
           and the mode to derive q_max ('module', 'average', 'finger'):
               * '2D' + 'module' or 'average' --> one value for total_wetted_area and q_max
1376
               * '3D' + 'average' --> 1D numpy arrays with two values for total_wetted_area and q_max (upper and lower divertors)
1377
1378
1379
1380
               * '3D' + 'module' --> 1D numpy arays with a value for each torus module (first dimension of heat_flux)
               * '2D' + 'finger' --> 1D numpy arays with a value for each divertor finger
               * '3D' + 'finger' --> 2D numpy arays with a value for each torus module and each divertor finger
    '''
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
    #check input
    heat_flux_dim = len(np.shape(heat_flux))
    if mode == 'average' and ports_loaded == None and heat_flux_dim>2:
        raise Exception("derive_wetted_area_per_module: ports must be specified in average mode since V3.3.2")
    elif mode == 'average' and heat_flux_dim>2:
        try:
            llen=len(ports_loaded)
        except:
            raise Exception("derive_wetted_area_per_module: each divertor need a description to calcualte proper the wetted area!")
        else:
            if llen!=len(heat_flux):
                raise Exception("derive_wetted_area_per_module: number of given divertors and number of descriptions does not match!")
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
    # prepare mapping and finger information
    finger_dic = read_finger_info(verbose=verbose-1)
    finger_ID = finger_dic['ID']
    profile_no = mapping['Finger_ID'][0]
    
    # find profile IDs of central profiles on each finger
    central_profiles_on_finger = []
    is_central_profile = []
    for i_finger in range(len(finger_ID)):
        n_profiles = finger_dic['n_profiles'][i_finger]
        i_profile_start = n_profiles//2 - profile_average_range//2 -1
        central_profiles = i_finger*100 + np.arange(i_profile_start, i_profile_start+profile_average_range)
        central_profiles_on_finger.append(central_profiles)
        is_central_profile.append( np.logical_or.reduce([profile_no == centre_profile for centre_profile in central_profiles]) )
    central_profiles_on_finger = np.array(central_profiles_on_finger)
    
1409
1410
1411
1412
1413
    if np.nanmin(heat_flux) < 0:
        heat_flux[heat_flux<noise_threshold] = 0
        if verbose>0:
            print('derive_wetted_area_per_module: set heat_flux < {0:.1f}kW/m² to 0'.format(noise_threshold/1E3))
            
1414
    
1415
1416
1417
1418
    # reduce dimension of heat_flux if in 'average' mode
    if heat_flux_dim == 2 and mode == 'average':
        mode = 'module'
    elif heat_flux_dim == 3 and mode == 'average':
1419
1420
#        heat_flux = np.nanmean(heat_flux, axis=0)
        ## sort the divertors
1421
        updiv=[]
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        downdiv=[]
        for i in range(len(ports_loaded)):
            # entries in the array/list are either int or str or even float
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                ## what can it be? 'AEFXX'? But what about OP2 with the A or K ports? Still be 3 letters
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        heat_flux=np.array([np.nanmean(np.asarray(updiv),axis=0),np.nanmean(np.asarray(downdiv),axis=0)])
        del downdiv,updiv
#        heat_flux_dim = 3
1437
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
1438
        mode = 'module'
1439
1440
        if verbose>0:
            print('derive_wetted_area_per_module: averaged 3D heat flux array over first dimension')
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
        if plot_it:
            fig,ax=plt.subplots(1,2)
            ax[0].imshow(heat_flux[0]/1e6,vmin=0,vmax=5)
            ax[1].imshow(heat_flux[1]/1e6,vmin=0,vmax=5)
    elif heat_flux_dim == 3 and mode == 'average_central_max':
        ## assuming that the strike lines on each divertor are shifted a little bit radially to each other, shift the profiles so that maximimas agree in position
        # if not p max is lower and the strike-line and wetted area would to too large.        
        ## sort the divertors
        updiv=[]
        downdiv=[]
        for i in range(len(ports_loaded)):
            try:
                port=int(ports_loaded[i])
            except: #okay it is not an int or an int like string
                port=int(ports_loaded[i][3:])
            if port%10==0:
                downdiv.append(heat_flux[i])
            else:
                updiv.append(heat_flux[i])
        dummyup=updiv[0].copy()
        for i in range(1,len(updiv)):            
            for j in range(len(finger_ID)):                
                for k in range(finger_dic['n_profiles'][j]):
                    loc=np.where(mapping['Finger_ID'][0]==j*100+k)
                    line1=updiv[0][loc]
                    line2=updiv[i][loc]
                    if np.argmax(line1)!=0 and np.argmax(line2)!=0:
                        pmax_div=np.argmax(line1)-np.argmax(line2)
                        if pmax_div<0:
                            pstart=0
                            pend=len(loc[0])+pmax_div
                        else:
                            pstart=pmax_div
                            pend=len(loc[0])-pmax_div
                    else:
                        pmax_div=0
                        pstart=0
                        pend=len(loc[0])
#                    print(pend,max(loc[0]),pmax_div,np.shape(dummyup),max(loc[0]),max(loc[1]))
                    for y in range(pstart,pend):
                        dummyup[loc[0][y],loc[1][0]]=dummyup[loc[0][y],loc[1][0]]+updiv[i][loc[0][y]+pmax_div,loc[1][0]]
        dummyup=dummyup/len(updiv)
        dummydwn=downdiv[0].copy()
        for i in range(1,len(downdiv)):            
            for j in range(len(finger_ID)):                
                for k in range(finger_dic['n_profiles'][j]):
                    loc=np.where(mapping['Finger_ID'][0]==j*100+k)
                    line1=downdiv[0][loc]
                    line2=downdiv[i][loc]
                    if np.argmax(line1)!=0 and np.argmax(line2)!=0:
                        pmax_div=np.argmax(line1)-np.argmax(line2)
                        if pmax_div<0:
                            pstart=0
                            pend=len(loc[0])+pmax_div
                        else:
                            pstart=pmax_div
                            pend=len(loc[0])-pmax_div
                    else:
                        pmax_div = 0
                        pstart  =0
                        pend=len(loc[0])
                    for y in range(pstart,pend):
                        dummydwn[loc[0][y],loc[1][0]] = dummydwn[loc[0][y],loc[1][0]]+downdiv[i][loc[0][y]+pmax_div,loc[1][0]]
        dummydwn = dummydwn/len(downdiv)
        
        heat_flux = np.array([dummyup,dummydwn])
        heat_flux = np.nan_to_num(heat_flux)
        ports_loaded = [1,0]#'upper divertor','lower divertor']#'mean heat flux'
        mode = 'module'
        if plot_it:
            print(np.shape(dummyup),np.shape(dummydwn))
#            plt.figure()
            fig,ax = plt.subplots(2,2)
            ax[0][0].imshow(np.nanmean(np.asarray(updiv), axis=0), vmin=0, vmax=5e6)
            ax[1][0].imshow(dummyup, vmin=0, vmax=5e6)
            ax[0][1].imshow(np.nanmean(np.asarray(downdiv), axis=0),vmin=0,vmax=5e6)
            ax[1][1].imshow(dummydwn,vmin=0,vmax=5e6)
#        print("in development")
1519
1520
    if heat_flux_dim==3:
        # assume dimensions: toroidal index (camera ports), row, column
1521
        n_ports = np.shape(heat_flux)[0]#, n_rows, n_cols
1522
        if verbose>0:
1523
            print('derive_wetted_area_per_module: deriving wetted area on {0} divertor modules in {1} mode...'.format(n_ports, mode))
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540