IR_image_tools.py 19.4 KB
Newer Older
1
2
3
4
# -*- coding: utf-8 -*-
"""
Created on Wed May  9 14:56:32 2018

5
@author: Holger Niemann, Peter Drewelow, Yu Gao
6
7
8
9
10
11
12
13
14
15
16

mainly to clean up the downloadversionIRdata code
Tools for:
    checking IR images, 
    calculate gain and offset again from 
    check backgroundframes
    check coldframes
    ...
"""
import numpy as np
import matplotlib.pyplot as plt
17
from IR_config_constants import portcamdict,IRCamRefImagespath,IRCAMBadPixels_path
18
19
20
import h5py
from os.path import join, basename
import glob
21
import datetime
22
23


24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def get_OP_by_time(time_ns=None, shot_no=None, program_str=None):
    '''Derives operation phase (OP) of W7-X based on either:
       a nanosacond time stamp, a MDSplus style shot no. or a program ID.
       IN:
          time_ns      - integer of nanosecond time stamp, 
                         e.g. 1511972727249834301 (OPTIONAL)
          shot_no      - integer of MDSplus style shot number, 
                         e.g. 171207022 (OPTIONAL)
          program_str  - string of CoDaQ ArchiveDB style prgram number or date, 
                         e.g. '20171207.022' or '20171207' (OPTIONAL)
       RETURN:
          conn         - MDSplus connection object, to be used in e.g. 1511972727249834301
                         read_MDSplus_image_simple(), read_MDSplus_metadata()
   '''
    # derive operation phase (OP) from time as nanosecond time stamp or string
    if time_ns is not None:
        dateOP = datetime.datetime.utcfromtimestamp(time_ns/1e9)
    elif shot_no is not None:
        dateOP = datetime.datetime.strptime(str(shot_no)[:6], '%y%m%d')
    elif program_str is not None:
        dateOP = datetime.datetime.strptime(program_str[:8], '%Y%m%d')
    else:
        raise Exception('get_OP_by_time: ERROR! neither time, shot no. or program ID provided')
        
    if dateOP.year == 2017:
        if dateOP.month>8 and dateOP.month<12:
            return "OP1.2a"
        elif dateOP.month==8 and dateOP.day>28:
            return "OP1.2a"
        elif dateOP.month==12 and dateOP.day<8:
            return "OP1.2a"
        else:
            return None        
    elif dateOP.year == 2018:
        return "OP1.2b"
    elif dateOP.year <= 2016 and dateOP.year >= 2015:
        if (dateOP.year == 2016 and dateOP.month <= 3) or (dateOP.year == 2015 and dateOP.month == 12):
            return "OP1.1"
        else:
            return None

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

def bestimmtheitsmaß_general(data,fit):
    R=0
    if len(fit)==len(data):
        mittel=np.sum(data)/len(data)
        qam=quad_abweich_mittel(fit,mittel)
        R=qam/(qam+quad_abweich(data,fit))
    else:
        print("Arrays must have same dimensions")
    return R
    
def quad_abweich_mittel(data,mittel):
    R=0
    for i in data:
        R=R+(i-mittel)**2
    return R
    
def quad_abweich(data,fit):
    R=0
    if len(fit)==len(data):
        for i in range(len(data)):
            R=R+(data[i]-fit[i])**2
    else:
        print("Arrays must have same dimensions")
    return R    
        
def check_coldframe(coldframe,references=None,threshold=0.5,plot_it=False):
    '''
    return true/false and the quality factor
    '''
    shapi=np.shape(coldframe)
    ##function  (np.arange(0,768)-384)**(2)/900-50
    datasets=[]
    for i in [int(shapi[1]//4),int(shapi[1]//2),int(shapi[1]//4*3)]:
        dataline=coldframe[0:shapi[0],i]    
        datasets.append(dataline-np.mean(dataline))
    if references==None:
        references=[]
        for dat in datasets:        
            mini=np.mean(dat[shapi[0]/2-50:shapi[0]/2+50])
            a=(np.mean(dat[0:50])-mini)/(int(shapi[0]/2))**2
            reference=a*(np.arange(0,shapi[0])-int(shapi[0]/2))**(2)+mini
            references.append(reference)
    bestimmtheit=[]
    if plot_it:
        plt.figure()
        plt.imshow(coldframe,vmin=np.mean(coldframe)-500,vmax=np.mean(coldframe)+500)
        plt.figure()
    for i_dat in range(len(datasets)):
        dat=datasets[i_dat]
        reference=references[i_dat]
        bestimmtheit.append(bestimmtheitsmaß_general(dat,reference))
        if plot_it:            
            plt.plot(dat,label='data')
            plt.plot(reference,label='reference')
#            print(int(shapi[0]/2),1*(np.max(datasets[-1])-mini),mini)
            plt.legend()
    if np.mean(bestimmtheit)>threshold:
        return True,bestimmtheit
    else:
        return False,bestimmtheit

def check_coldframe_by_refframe(coldframe,reference_frame,threshold=0.8,plot_it=False):
    references=[]
    shapi=np.shape(reference_frame)
130
    for i in [int(shapi[1]//5),int(shapi[1]//2),int(shapi[1]//4*3)]:
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        dataline=reference_frame[0:shapi[0],i]    
        references.append(dataline-np.mean(dataline))
    return check_coldframe(coldframe,references,threshold,plot_it)
        
def check_backgroundframe(backgroundframe,threshold=50):
    '''
    return true or false
    '''
    shapi=np.shape(backgroundframe)
    valid=True
    dataset=[]
    for i in [int(shapi[1]//4),int(shapi[1]//2),int(shapi[1]//4*3)]:
        referenceline=backgroundframe[0:shapi[0],i]    
        meanref=referenceline-np.mean(referenceline)
        dataset.append(np.max(meanref)-np.min(meanref))
    if np.mean(dataset)<threshold:
        valid=False    
    return valid,np.mean(dataset)
    
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def read_bad_pixels_from_file(port, shot_no=None, program=None):
    '''Reads bad pixels stored in *.bpx file on E4 server.
       Requires one of the optional arguments shot_no or program.
        IN
            port            - integer of port no of camera
            shot_no         - integer of MDSplus style shot number, e.g. 171207022 (OPTIONAL)
            program         - string of CoDaQ ArchiveDB style prgram number or date, 
                              e.g. '20171207.022' or '20171207' (OPTIONAL)
        OUT
            bad_pixle_list  - list of tuples (row,column) of pixel coordinates 
                              as integer
    '''
    if shot_no is not None:    
        OP = get_OP_by_time(shot_no=shot_no)
    elif program is not None:
        OP = get_OP_by_time(program_str=program)
    else:
        raise Exception('read_bad_pixels_from_file: ERROR! Need either shot no. or program string.')
        
    port_name = 'AEF{0}'.format(port)
    bad_pixel_file = 'badpixel_{0}.bpx'.format(portcamdict[OP][port_name][6:])
    data = np.genfromtxt(IRCAMBadPixels_path+bad_pixel_file, dtype=int)
    bad_pixle_list = list(zip(data[:,1], data[:,0]))
    return bad_pixle_list
    

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def find_outlier_pixels(frame,tolerance=3,worry_about_edges=True,plot_it=False):
    # This function finds the bad pixels in a 2D dataset. 
    # Tolerance is the number of standard deviations used for cutoff.
    frame = np.array(frame)#, dtype=int)
    from scipy.ndimage import median_filter
    blurred = median_filter(frame, size=9)
    difference = frame - blurred
    threshold = tolerance*np.std(difference)
    mean = np.mean(difference)
    if plot_it:
        
        fig = plt.figure()
        fig.suptitle('find_outlier_pixels: histogram')
        plt.hist(difference.ravel(),50,log=True,histtype='stepfilled')
        plt.axvline(mean, linewidth=2, color='k',label='mean')
        x1 = mean - np.std(difference)
        x2 = mean + np.std(difference)
        plt.axvspan(x1,x2, linewidth=2, facecolor='g',alpha=0.1,label='standard deviation')
        x1 = mean - tolerance*np.std(difference)
        x2 = mean + tolerance*np.std(difference)
        plt.axvspan(x1,x2, linewidth=2, facecolor='r',alpha=0.1,label='threshold for bad pixel')
        plt.legend()
        plt.show()
        
    #find the hot pixels
    bad_pixels = np.transpose(np.nonzero((np.abs(difference)>threshold)) )
    bad_pixels = (bad_pixels).tolist()
    bad_pixels = [tuple(l) for l in bad_pixels]
    
    if plot_it:
        plt.figure()
        plt.imshow(frame)
        for i in range(len(bad_pixels)):
            plt.scatter(bad_pixels[i][1],bad_pixels[i][0],c='None')
        plt.show()
   
    return bad_pixels

214

215
def correct_images(images,badpixels):
216
    print('correct_images: New routine restore_bad_pixels() is used and can be called directly. Check out "help(restore_bad_pixels)"')
217
    if type(badpixels)!=int:
218
219
220
221
222
223
224
225
226
227
        if type(images) == list:
            # return corrected images also as list of 2D arrays
            images = restore_bad_pixels(images, np.invert(badpixels==1)).astype(np.float32)
            images = list(images)
        else:
            # keep shape
            images = restore_bad_pixels(images, np.invert(badpixels==1)).astype(np.float32)
        
#        for i in range(len(images)):
#            images[i]=(restore_pixels(images[i],np.invert(badpixels==1))).astype(np.float32)
228
229
230
        print("done")
    return images

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

def restore_bad_pixels(frames, bad_pixel, by_list=True, check_neighbours=True, plot_it=False, verbose=0):
    """Restore bad pixel by interpolation of adjacent pixels. Optionally make 
       sure that adjacent pixels are not bad (time consuming). Default is to use 
       a list of bad pixels and a for loop. For many bad pixels consider using 
       the optinal alternative using a bad pixel mask.
        IN:
            frames              - either list of frames as 2D numpy array, 
                                  or 3D numpy array (frame number, n_rows, n_cols),
                                  or 2D numpy array (n_rows, n_cols)
            bad_pixel           - either list of tuples of bad pixel coordinates,
                                  or mask of pixel status (good=True, bad=False)
            by_list             - boolean of whether to use a list and a for loop (True),
                                  or to use a mask of bad pixel and array operations (False)
                                  (OPTIONAL: if not provided, True (list) is default)
            check_neighbours    - boolean of whether to check if neighbours of a bad pixel
                                  are not bad either before computing a mean
                                  (works only in list mode!)
                                  (OPTIONAL: if not provided, check is on)
            plot_it             - boolean to decide whether to plot intermediate
                                  results or not
                                  (OPTIONAL: if not provided, switched off)
            verbose             - integer of feedback level (amount of prints)
                                  (OPTIONAL: if not provided, only ERROR output)
        RETURN:
            frames              - 3D numpy array (frame number, n_rows, n_cols) of 
                                  corrected frames
    """

    # make sure frames is correctly shaped
    if type(frames) == list:
        frames = np.array(frames)
        frame_shape = 'list'
    else:
        if len(np.shape(frames)) == 2:
            frames = np.array([frames])
            frame_shape = '2D'
        elif len(np.shape(frames)) == 3:
            frame_shape = '3D'
            pass
        else:
            raise Exception('restore_bad_pixels: ERROR! Unexpected shape of frames.')
    frame_dtype = frames.dtype
#    frames = frames.astype(float)
    n_frames, n_rows, n_cols = np.shape(frames)
    if plot_it:
        start_frame = np.copy(frames[0])
    
279
280
281
    # make sure bad pixel are provided as mask and list  
    if type(bad_pixel) is list:
        blist = bad_pixel
282
283
        bmask = np.ones([n_rows, n_cols],dtype=bool)
        for pix in blist:
284
285
286
            bmask[pix] = False
        bmask = np.invert(bmask)
    else:
287
288
289
290
        if np.shape(bad_pixel)[0] == n_rows and np.shape(bad_pixel)[1] == n_cols:
            bmask = np.invert(bad_pixel)            
            x,y = np.where(bmask)
            blist = list(zip(x,y))
291
        else:
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            raise Exception('restore_bad_pixels: ERROR! bad_pixel in bad shape {0}'.format(np.shape(bad_pixel)))
            
    if verbose > 0:
        print('restore_bad_pixels: {0} bad pixels to be restored: {1} ... '.format(len(blist), blist[:3]))    
    
    # expand frame by rows and columns of zeros to simplify treatment of edges
    frames = np.dstack([np.zeros([n_frames,n_rows], dtype=frame_dtype), frames, np.zeros([n_frames,n_rows], dtype=frame_dtype)])
    frames = np.hstack([np.zeros([n_frames,1,n_cols+2], dtype=frame_dtype), frames, np.zeros([n_frames,1,n_cols+2], dtype=frame_dtype)])
    bmask = np.vstack([np.zeros([1,n_cols], dtype=bool), bmask, np.zeros([1,n_cols], dtype=bool)])
    bmask = np.hstack([np.zeros([n_rows+2,1], dtype=bool), bmask, np.zeros([n_rows+2,1], dtype=bool)])
    
    # define number of neighbours (up to 4) ina an array of expanded frame size
    n_neighbours = np.ones([n_frames, n_rows+2, n_cols+2])*4
    n_neighbours[:,1,:] = 3
    n_neighbours[:,-2,:] = 3
    n_neighbours[:,:,1] = 3
    n_neighbours[:,:,-2] = 3
    n_neighbours[:,1,1] = 2
    n_neighbours[:,1,-2] = 2
    n_neighbours[:,-2,1] = 2
    n_neighbours[:,-2,-2] = 2
    
    if by_list:
        # ===== correct bad pixels using the list of bad pixels =====
        #
        
        for pos in blist:
            # Note:
            # pos points to real frame coordinates, while bmask, n_neighbours have been expanded!
            
            if check_neighbours:
                # takes only neighbours that are not bad
                pos_l = np.where(bmask[pos[0]+1,:pos[1]+1]==False)[0]
                if len(pos_l) != 0:
                    pos_l = pos_l[-1]
                else: 
                    pos_l = pos[1]+1
                pos_r = np.where(bmask[pos[0]+1,pos[1]+1:]==False)[0]
                if len(pos_r) != 0:
                    pos_r = pos_r[0] + pos[1]+1
                else: 
                    pos_r = pos[1]+2
                pos_t = np.where(bmask[:pos[0]+1,pos[1]+1]==False)[0]
                if len(pos_t) != 0:
                    pos_t = pos_t[-1]
                else: 
                    pos_t = pos[0]+1
                pos_b = np.where(bmask[pos[0]+1:,pos[1]+1]==False)[0]
                if len(pos_b) != 0:
                    pos_b = pos_b[0] + pos[0]+1
                else: 
                    pos_b = pos[0]+2
344
            else:
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                # insensitive to neighbours being bad as well!
                pos_l = pos[1]
                pos_r = pos[1]+2
                pos_t = pos[0]
                pos_b = pos[0]+2
            average = (frames[:,pos[0]+1,pos_l].astype(float) + 
                       frames[:,pos[0]+1,pos_r].astype(float) + 
                       frames[:,pos_t,pos[1]+1].astype(float) + 
                       frames[:,pos_b,pos[1]+1].astype(float)) / n_neighbours[:,pos[0]+1,pos[1]+1]
            frames[:,pos[0]+1,pos[1]+1] = average.astype(frame_dtype)
        frames = frames[:,1:-1,1:-1]
        
    else:
        # ======= correct bad pixels using the bad pixel mask =======
        #
        # (insensitive to neighbours being bad as well!)
   
        # prepare mask arrays for neighbours by shifting it to left, right, top and bottom
        bmask_l = np.hstack([bmask[:,1:], np.zeros([n_rows+2,1], dtype=bool)])
        bmask_r = np.hstack([np.zeros([n_rows+2,1], dtype=bool), bmask[:,:-1]])
        bmask_t = np.vstack([bmask[1:,:], np.zeros([1,n_cols+2], dtype=bool)])
        bmask_b = np.vstack([np.zeros([1,n_cols+2], dtype=bool), bmask[:-1,:]])
        
    
        # -----------------------------------
        # restore by mask
        #
        frames[:,bmask] = ( (frames[:,bmask_l].astype(float) + 
                             frames[:,bmask_r].astype(float) + 
                             frames[:,bmask_t].astype(float) + 
                             frames[:,bmask_b].astype(float)) / n_neighbours[:,bmask] ).astype(frame_dtype)
        frames = frames[:,1:-1,1:-1]
    
    # plot comparison
    if plot_it:
        plt.figure()
        plt.title('bad pixel correction of first frame')
        m = np.mean(start_frame)
        s = np.std(start_frame)
        plt.imshow(start_frame, vmin=m-s, vmax=m+s)
        plt.colorbar()
        x,y = zip(*blist)
        plt.scatter(y,x, marker='o', s=5, c='r', linewidths=1)
        plt.tight_layout()
        plt.show()

    if frame_shape == 'list':
        frames = list(frames)
    elif frame_shape == '2D' and len(np.shape(frames))==3:
        frames = frames[0]
        
    return frames

398
399
400
401
402
403
404

def generate_new_hot_image(cold,reference_cold,reference_hot):
    if cold==None or reference_cold==None or reference_hot==None:
        raise Exception("Cannot Calculate new Hot image, if images are missing!")
    else:
        return reference_hot+(cold-reference_cold)
    
405
def calculate_gain_offset_image_pix(cold_image,hot_image=None,reference_cold=None,reference_hot=None,bose=1):    
406
407
    if hot_image==None:
        hot_image=generate_new_hot_image(cold_image,reference_cold,reference_hot)
408
409
    if bose>0:
        print("calculate gain and offset")        
410
411
412
413
414
415
416
    Sh_ref =  hot_image[ ( np.int( np.shape(hot_image)[0]   /2  )  ) ][np.int( (np.shape(hot_image)[1]   /2  ) ) ]          
    Sc_ref =  cold_image[ ( np.int(  (np.shape(cold_image)[0])  /2 )  ) ][( np.int(  (np.shape(cold_image)[1])  /2 ) ) ]  
    Gain_rel =  ( Sh_ref  - Sc_ref ) / ( hot_image  - cold_image)    
    Off_h_rel = Sh_ref -   hot_image*Gain_rel
    Off_c_rel = Sc_ref -   cold_image*Gain_rel    
    Offset_rel  = ( Off_h_rel + Off_c_rel ) /2
    return Gain_rel,Offset_rel
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

def calculate_gain_offset_image(cold_image,hot_image=None,reference_cold=None,reference_hot=None,bose=1):    
    if hot_image==None:
        hot_image=generate_new_hot_image(cold_image,reference_cold,reference_hot)
    if bose>0:
        print("calculate gain and offset")  
    
#    Sh_ref =  hot_image[ ( np.int( np.shape(hot_image)[0]   /2  )  ) ][np.int( (np.shape(hot_image)[1]   /2  ) ) ]          
#    Sc_ref =  cold_image[ ( np.int(  (np.shape(cold_image)[0])  /2 )  ) ][( np.int(  (np.shape(cold_image)[1])  /2 ) ) ]  
    print(hot_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])
    print(cold_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])
    Sh_ref =  np.mean( hot_image[( np.int( np.shape(hot_image)[0]/2) )-2: (np.int( np.shape(hot_image)[0]/2))+3,np.int((np.shape(hot_image)[1]/2))-2:np.int((np.shape(hot_image)[1]/2))+3 ])    
    Sc_ref =  np.mean(cold_image[( np.int( np.shape(cold_image)[0]/2) )-2: (np.int( np.shape(cold_image)[0]/2))+3,np.int((np.shape(cold_image)[1]/2))-2:np.int((np.shape(cold_image)[1]/2))+3 ])    
    Gain_rel =  ( Sh_ref  - Sc_ref ) / ( hot_image  - cold_image)    
    Off_h_rel = Sh_ref -   hot_image*Gain_rel
    Off_c_rel = Sc_ref -   cold_image*Gain_rel    
    Offset_rel  = ( Off_h_rel + Off_c_rel ) /2
    return Gain_rel,Offset_rel    

    
#%% functions from Yu Gao
""" functions by Yu Gao"""
    
def load_ref_images(port, exposuretime):
  '''
  load the reference cold and hot frame during calibration from local files.
  @port: e.g. 'AEF10'
  @exposuretime: int number.
  '''
  cameraname = portcamdict['OP1.2a'][port]
  foldername = cameraname.split('_')[0] + '_' + cameraname.split('_')[2]
  scanpath = join(IRCamRefImagespath, foldername)
  coldref, hotref = [], []
  for filename in glob.iglob(scanpath + '\*' + str(int(exposuretime)) + 'us.h5', recursive=True):
    if 'hot' in filename:
      print (filename)
      with h5py.File(filename, 'r') as h5in:
        hotref = h5in[basename(filename)].value
    elif 'cold' in filename:
      print (filename)
      with h5py.File(filename, 'r') as h5in:
        coldref = h5in[basename(filename)].value
  return coldref, hotref

def reconstruct_coldframe (exposuretime, sT, a, bnew, coldref):
  cirebuild = a * sT + bnew * exposuretime + coldref
  return cirebuild