atomic_data.nomadmetainfo.json 12 KB
Newer Older
1
2
{
  "type": "nomad_meta_info_1_0",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
3
  "description": "meta info describing atomic properties most names are expected to start with atomic_",
4
5
6
7
8
  "dependencies": [ {
      "relativePath": "common.nomadmetainfo.json"
    }, {
      "relativePath": "meta_types.nomadmetainfo.json"
    }],
9
10
  "metaInfos": [
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
11
      "description": "Collection of atomic properties.",
12
      "kindStr": "type_section",
13
14
15
16
      "name": "section_atomic_property_collection",
      "superNames": []
    }, 
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
17
      "description": "Section atomic properties.",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
18
19
      "kindStr": "type_section",
      "name": "section_atomic_property",
20
      "superNames": ["section_atomic_property_collection"]
21
22
    }, 
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
23
      "description": "Section of atomic properties for given for a given $XC$ method.",
24
      "kindStr": "type_section",
25
      "name": "section_atomic_property_method",
26
      "superNames": ["section_atomic_property_collection"]
27
    },
28
29
    {
      "description": "Reference to the method that is used to calculate associated atomic property.",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
30
31
      "dtypeStr": "C",
      "repeats": false,
32
33
34
      "name": "atomic_property_to_method_ref",
      "referencedSections": ["section_atomic_property_method"],
      "shape": [],
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
35
      "superNames": ["section_atomic_property"
36
37
      ]
    },
38
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
39
      "description": "Theory level for atomic calculation.",
40
      "dtypeStr": "C",
41
      "name": "atomic_xc_method",
42
43
      "repeats": false,
      "shape": [],
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
44
      "superNames": ["section_atomic_property_method"]
45
46
47
48
49
50
51
52
53
    },
    {
      "description": "Element symbol in the periodic table.",
      "dtypeStr": "C",
      "name": "atomic_element_symbol",
      "shape": [],
      "units": "",
      "superNames": ["section_atomic_property"]
    },
54
    {"description": "Polarizability is the ability to form instantaneous multipoles. It is a property of matter. Polarizabilities determine the dynamical response of a bound system to external fields, and provide insight into a materials internal structure. Electric polarizability is the relative tendency of a charge distribution, like the electron cloud of an atom or molecule, and consequently of any material body, to have its charges displaced by any external electric field, which in the uniform case is applied typically by a charged parallel-plate capacitor. The polarizability in isotropic media is defined as the ratio of the induced dipole moment of an atom to the electric field that produces this dipole moment. We are often interested only in the spherical average (or isotropic component) of the polarizability tensor. The isotropic polarizability is defined as average of principal components of the polarizability tensor.",
55
56
57
58
      "dtypeStr": "f",
      "name": "atomic_isotropic_polarizability",
      "shape": [],
      "units": "m**3",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
59
      "superNames": ["section_atomic_property"]
60
61
    },
    {
62
      "description": "The long-range van der Waals energy between two non overlapping fragments $A$ and $B$ of the physical system under study can be expressed as a multipolar expansion and $C_{n}^{AB}$ are the multipolar vdW coefficients. A widespread approach to include long-range vdW interactions in atomistic calculation is to truncate multipolar expansion to the dipole-dipole order and keep only the leading $C_{6}^{AB} /R^{6}$ term. The vdW $C_{6}$ coefficient can be obtained using Casimir-Polder integral over frequency dependent polarizability as function of imaginary frequency argument.",
63
64
65
66
      "dtypeStr": "f",
      "name": "atomic_isotropic_vdw_coefficient",
      "shape": [],
      "units": "J.m**6",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
67
      "superNames": ["section_atomic_property"]
68
69
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
70
      "description": "The van der Waals radius, of an atom or molecule is the radius of an imaginary sphere representing the distance of closest approach for another atom(s). The vdW radius corresponds to half of the distance between two atoms where the Pauli repulsion balances the London dispersion attraction.",
71
72
73
74
      "dtypeStr": "f",
      "name": "atomic_vdw_radius",
      "shape": [],
      "units": "m",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
75
      "superNames": ["section_atomic_property"]
76
77
    },
    {
78
      "description": "Charge of the free atom for corresponding atomic property.",
79
80
81
82
      "dtypeStr": "f",
      "name": "atomic_charge",
      "shape": [],
      "units": "C",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
83
      "superNames": ["section_atomic_property"]
84
85
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
86
      "description": "Atomic number $Z$ for atomic species.",
87
88
89
90
      "dtypeStr": "i",
      "name": "atomic_number",
      "shape": [],
      "units": "",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
91
      "superNames": ["section_atomic_property"]
92
93
    },
    {
94
      "description": "Atomic spin multiplicity. The multiplicity of an energy level is defined as $2S+1$, where S is the total spin angular momentum. States with multiplicity 1, 2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and quintets.",
95
96
97
98
      "dtypeStr": "i",
      "name": "atomic_spin_multiplicity",
      "shape": [],
      "units": "",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
99
      "superNames": ["section_atomic_property"]
100
101
102
103
104
105
106
107
    },
    
    {
      "description": "Basis set used for atomic calculation.",
      "dtypeStr": "C",
      "name": "atomic_basis_set",
      "shape": [],
      "units": "",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
108
      "superNames": ["section_atomic_property_method"]
109
110
111
112
113
114
115
    },
    {
      "description": "Reference for associated atomic property calculations.",
      "dtypeStr": "C",
      "name": "atomic_reference_DOI",
      "shape": [],
      "units": "",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
116
      "superNames": ["section_atomic_property_method"]
117
118
119
120
121
122
123
    },
    {
      "description": "In electronic structure theory, calculations may be performed for a spectrum with many excited energy levels. Molecular orbitals (MOs) are made of fractions of atomic orbitals. All atoms in the molecule provide their atomic orbitals for construction of MOs, but not all atomic orbitals must participate in all MOs. For example, the Hartree--Fock method for atoms or molecules assumes that the wave function is a single configuration state function with well-defined quantum numbers and that the energy level is not necessarily the ground state. The highest occupied molecular orbital state for a system is called as HOMO.",
      "dtypeStr": "f",
      "name": "atomic_homo",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
124
      "superNames": ["section_atomic_property"]
125
126
127
128
129
130
131
    },
    {
      "description": "In electronic structure theory, calculations may be performed for a spectrum with many excited energy levels. Molecular orbitals (MOs) are made of fractions of atomic orbitals.  All atoms in the molecule provide their atomic orbitals for construction of MOs, but not all atomic orbitals must participate in all  MOs.  For example, the Hartree--Fock method for atoms or molecules assumes that the wave function is a single configuration state function with well-defined quantum numbers and that the energy level is not necessarily the ground state. The lowest unoccupied molecular orbital state for a system is called as LUMO.",
      "dtypeStr": "f",
      "name": "atomic_lumo",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
132
      "superNames": ["section_atomic_property"]
133
134
135
136
137
138
139
    },
    {
      "description": "Difference between Highest occupied and Lowest unoccupied single-particle state energy for free atom.",
      "dtypeStr": "f",
      "name": "atomic_homo_lumo_diff",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
140
      "superNames": ["section_atomic_property"]
141
142
143
144
145
146
147
    },
    {
      "description": "Binding energy between two atoms.",
      "dtypeStr": "f",
      "name": "atomic_electronic_binding_energy",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
148
      "superNames": ["section_atomic_property"]
149
150
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
151
      "description": "Expectation value of the radius $<r>$ of the highest occupied atomic orbital for free atom.",
152
153
154
155
      "dtypeStr": "f",
      "name": "atomic_r_homo",
      "shape": [],
      "units": "m",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
156
      "superNames": ["section_atomic_property"]
157
158
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
159
      "description": "Expectation value of the radius $<r>$ of the highest occupied atomic orbital for anionic atom.",
160
161
162
163
      "dtypeStr": "f",
      "name": "atomic_r_homo_anion",
      "shape": [],
      "units": "m",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
164
      "superNames": ["section_atomic_property"]
165
166
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
167
      "description": "Expectation value of the radius $<r>$ of the highest occupied atomic orbital for cationic atom.",
168
169
170
171
172
173
174
      "dtypeStr": "f",
      "name": "atomic_r_homo_cation",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
175
      "description": "Radius at which $s_{max}$ radial function is maximum for free atom.",
176
177
178
179
180
181
182
      "dtypeStr": "f",
      "name": "atomic_rs_max",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
183
      "description": "Radius at which $p_{max}$ radial function is maximum for free atom.",
184
185
186
187
188
189
190
      "dtypeStr": "f",
      "name": "atomic_rp_max",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
191
      "description": "Radius at which $d_{max}$ radial function is maximum for free atom.",
192
193
194
195
196
197
198
      "dtypeStr": "f",
      "name": "atomic_rd_max",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
199
      "description": "Expectation value of $<s>$ radial function for free atom.",
200
201
202
203
204
205
206
      "dtypeStr": "f",
      "name": "atomic_rs_expectation",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
207
      "description": "Expectation value of $<p>$ radial function for free atom.",
208
209
210
211
212
213
214
      "dtypeStr": "f",
      "name": "atomic_rp_expectation",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
215
      "description": "Expectation value of $<d>$ radial function for free atom.",
216
217
218
219
220
221
222
223
224
225
226
227
      "dtypeStr": "f",
      "name": "atomic_rd_expectation",
      "shape": [],
      "units": "m",
      "superNames": ["section_atomic_property"]
    },
    {
      "description": "Half of the distance between equilibrium homonuclear-dimer.",
      "dtypeStr": "f",
      "name": "atomic_r_by_2_dimer",
      "shape": [],
      "units": "m",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
228
      "superNames": ["section_atomic_property"]
229
230
231
232
233
234
235
    },
    {
      "description": "Ionization potential for free atom. The ionization potential is qualitatively defined as the amount of energy required to remove the most loosely bound electron or the valence electron, of an isolated gaseous atom to form a cation.",
      "dtypeStr": "f",
      "name": "atomic_ionization_potential",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
236
      "superNames": ["section_atomic_property"]
237
238
239
240
241
242
243
    },
    {
      "description": "Electron affinity for free atom. The electron affinity of an atom is the amount of energy released or spent when an electron is added to a neutral atom in the gaseous state to form a negative ion.",
      "dtypeStr": "f",
      "name": "atomic_electron_affinity",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
244
      "superNames": ["section_atomic_property"]
245
246
247
248
249
250
251
    },
    {
      "description": "Source of atomic property Experiment/ Theory.",
      "dtypeStr": "C",
      "name": "atomic_property_source",
      "shape": [],
      "units": "",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
252
      "superNames": ["section_atomic_property_method"]
253
254
    },
    {
255
      "description": "The term symbol ($^{2S+1}L_{J}$) is an abbreviated description of the (total) angular momentum quantum numbers in a multi-electron atom (even a single electron can also be described by a term symbol). Each energy level of an atom with a given electron configuration is described by not only the electron configuration but also its own term symbol, as the energy level also depends on the total angular momentum including spin. The usual atomic term symbols assume LS coupling (also known as Russell-Saunders coupling or Spin-Orbit coupling). The ground state term symbol is predicted by Hund's rules.",
256
257
258
259
260
261
262
263
264
265
266
267
      "dtypeStr": "C",
      "name": "atomic_term_symbol",
      "shape": [],
      "units": "",
      "superNames": ["section_atomic_property"]
    },
    {
      "description": "The Mulliken electronegativity quantitatively defined as the average of the values of its first ionization energy and the absolute value of its electron affinity.",
      "dtypeStr": "f",
      "name": "atomic_mulliken_electronegativity",
      "shape": [],
      "units": "J",
Gobre, Vivekanand (vigo)'s avatar
Gobre, Vivekanand (vigo) committed
268
      "superNames": ["section_atomic_property"]
269
270
271
272
    }
]
}