Commit e05a563f by Martin Reinecke

### improve demo

parent 2396eb78
 ... ... @@ -10,25 +10,27 @@ import pysharp import time np.random.seed(42) lmax=999 lmax=2047 mmax=lmax kmax=18 kmax=2 def nalm(lmax, mmax): return ((mmax+1)*(mmax+2))//2 + (mmax+1)*(lmax-mmax) def idx(l,m): return (m*((2*lmax+1)-m))//2 + l def deltabeam(lmax,kmax): nalm_beam = ((kmax+1)*(kmax+2))//2 + (kmax+1)*(lmax-kmax) beam=np.zeros(nalm_beam)+0j beam=np.zeros(nalm(lmax, kmax))+0j for l in range(lmax+1): beam[l] = np.sqrt((2*l+1.)/(4*np.pi)) return beam # number of required a_lm coefficients nalm = ((mmax+1)*(mmax+2))//2 + (mmax+1)*(lmax-mmax) # get random a_lm slmT = np.random.uniform(-1., 1., nalm) + 1j*np.random.uniform(-1., 1., nalm) slmT = np.random.uniform(-1., 1., nalm(lmax, mmax)) + 1j*np.random.uniform(-1., 1., nalm(lmax,mmax)) # make a_lm with m==0 real-valued slmT[0:lmax+1].imag = 0. ... ... @@ -39,9 +41,9 @@ t0=time.time() foo = interpol_ng.PyInterpolator(slmT,blmT,lmax, kmax, 1e-5) print("setup: ",time.time()-t0) # evaluate total convolution on a sufficiently resolved Clenshaw-Curtis grid nth = 1000 nph = 2000 # evaluate total convolution on a sufficiently resolved Gauss-Legendre grid nth = lmax+1 nph = 2*mmax+1 ptg = np.zeros((nth,nph,3)) th, wgt = np.polynomial.legendre.leggauss(nth) th = np.arccos(th) ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!