interpol_ng.cc 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 *  Copyright (C) 2020 Max-Planck-Society
 *  Author: Martin Reinecke
 */

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <vector>
#include <complex>
#include "mr_util/math/constants.h"
#include "mr_util/math/gl_integrator.h"
#include "mr_util/math/es_kernel.h"
#include "mr_util/infra/mav.h"
#include "mr_util/sharp/sharp.h"
#include "mr_util/sharp/sharp_almhelpers.h"
#include "mr_util/sharp/sharp_geomhelpers.h"
#include "alm.h"
#include "mr_util/math/fft.h"
#include "mr_util/bindings/pybind_utils.h"
Martin Reinecke's avatar
Martin Reinecke committed
20

21
22
23
24
25
26
27
using namespace std;
using namespace mr;

namespace py = pybind11;

namespace {

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
28
29
constexpr double ofmin=1.5;

30
31
32
template<typename T> class Interpolator
  {
  protected:
33
    bool adjoint;
Martin Reinecke's avatar
Martin Reinecke committed
34
    size_t lmax, kmax, nphi0, ntheta0, nphi, ntheta;
Martin Reinecke's avatar
Martin Reinecke committed
35
    int nthreads;
Martin Reinecke's avatar
fix    
Martin Reinecke committed
36
37
    double ofactor;
    size_t supp;
38
39
40
    ES_Kernel kernel;
    mav<T,3> cube; // the data cube (theta, phi, 2*mbeam+1[, IQU])

41
    void correct(mav<T,2> &arr, int spin)
42
      {
43
      double sfct = (spin&1) ? -1 : 1;
44
      mav<T,2> tmp({nphi,nphi});
Martin Reinecke's avatar
Martin Reinecke committed
45
      tmp.apply([](T &v){v=0.;});
Martin Reinecke's avatar
Martin Reinecke committed
46
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) = arr(i,j);
51
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
52
      for (size_t i=1, i2=nphi0-1; i+1<ntheta0; ++i,--i2)
Martin Reinecke's avatar
Martin Reinecke committed
53
        for (size_t j=0,j2=nphi0/2; j<nphi0; ++j,++j2)
54
          {
Martin Reinecke's avatar
Martin Reinecke committed
55
          if (j2>=nphi0) j2-=nphi0;
Martin Reinecke's avatar
Martin Reinecke committed
56
          tmp0.v(i2,j) = sfct*tmp0(i,j2);
57
          }
Martin Reinecke's avatar
Martin Reinecke committed
58
      // FFT to frequency domain on minimal grid
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
59
60
      r2r_fftpack(ftmp0,ftmp0,{0,1},true,true,1./(nphi0*nphi0),nthreads);
      // correct amplitude at Nyquist frequency
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63
64
65
      for (size_t i=0; i<nphi0; ++i)
        {
        tmp0.v(i,nphi0-1)*=0.5;
        tmp0.v(nphi0-1,i)*=0.5;
        }
Martin Reinecke's avatar
Martin Reinecke committed
66
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
Martin Reinecke's avatar
Martin Reinecke committed
67
68
69
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
70
71
72
73
74
75
76
77
78
      auto tmp1=tmp.template subarray<2>({0,0},{nphi, nphi0});
      fmav<T> ftmp1(tmp1);
      // zero-padded FFT in theta direction
      r2r_fftpack(ftmp1,ftmp1,{0},false,false,1.,nthreads);
      auto tmp2=tmp.template subarray<2>({0,0},{ntheta, nphi});
      fmav<T> ftmp2(tmp2);
      fmav<T> farr(arr);
      // zero-padded FFT in phi direction
      r2r_fftpack(ftmp2,farr,{1},false,false,1.,nthreads);
79
      }
80
81
82
83
84
85
86
87
88
89
    void decorrect(mav<T,2> &arr, int spin)
      {
      double sfct = (spin&1) ? -1 : 1;
      mav<T,2> tmp({nphi,nphi});
      fmav<T> ftmp(tmp);

      for (size_t i=0; i<ntheta; ++i)
        for (size_t j=0; j<nphi; ++j)
          tmp.v(i,j) = arr(i,j);
      // extend to second half
Martin Reinecke's avatar
Martin Reinecke committed
90
      for (size_t i=1, i2=nphi-1; i+1<ntheta; ++i,--i2)
91
92
93
94
95
        for (size_t j=0,j2=nphi/2; j<nphi; ++j,++j2)
          {
          if (j2>=nphi) j2-=nphi;
          tmp.v(i2,j) = sfct*tmp(i,j2);
          }
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
96
// FIXME: faster FFT
97
98
99
100
101
102
103
104
      r2r_fftpack(ftmp,ftmp,{0,1},true,true,1.,nthreads);
      auto fct = kernel.correction_factors(nphi, nphi0/2+1, nthreads);
      auto tmp0=tmp.template subarray<2>({0,0},{nphi0, nphi0});
      fmav<T> ftmp0(tmp0);
      for (size_t i=0; i<nphi0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          tmp0.v(i,j) *= fct[(i+1)/2] * fct[(j+1)/2];
      // FFT to (theta, phi) domain on minimal grid
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
105
      r2r_fftpack(ftmp0,ftmp0,{0,1},false, false,1./(nphi0*nphi0),nthreads);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
106
107
108
109
110
      for (size_t j=0; j<nphi0; ++j)
        {
        tmp0.v(0,j)*=0.5;
        tmp0.v(ntheta0-1,j)*=0.5;
        }
111
112
113
114
      for (size_t i=0; i<ntheta0; ++i)
        for (size_t j=0; j<nphi0; ++j)
          arr.v(i,j) = tmp0(i,j);
      }
115

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    vector<size_t> getIdx(const mav<T,2> &ptg) const
      {
      vector<size_t> idx(ptg.shape(0));
      constexpr size_t cellsize=16;
      size_t nct = ntheta/cellsize+1,
             ncp = nphi/cellsize+1;
      vector<vector<size_t>> mapper(nct*ncp);
      for (size_t i=0; i<ptg.shape(0); ++i)
        {
        size_t itheta=min(nct-1,size_t(ptg(i,0)/pi*nct)),
               iphi=min(ncp-1,size_t(ptg(i,1)/(2*pi)*ncp));
        mapper[itheta*ncp+iphi].push_back(i);
        }
      size_t cnt=0;
      for (const auto &vec: mapper)
        for (auto i:vec)
          idx[cnt++] = i;
      return idx;
      }

136
137
  public:
    Interpolator(const Alm<complex<T>> &slmT, const Alm<complex<T>> &blmT,
Martin Reinecke's avatar
Martin Reinecke committed
138
      double epsilon, int nthreads_)
139
140
      : adjoint(false),
        lmax(slmT.Lmax()),
141
        kmax(blmT.Mmax()),
Martin Reinecke's avatar
Martin Reinecke committed
142
143
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
144
        nphi(max<size_t>(20,2*good_size_real(size_t((2*lmax+1)*ofmin/2.)))),
Martin Reinecke's avatar
Martin Reinecke committed
145
        ntheta(nphi/2+1),
Martin Reinecke's avatar
Martin Reinecke committed
146
        nthreads(nthreads_),
Martin Reinecke's avatar
Martin Reinecke committed
147
        ofactor(double(nphi)/(2*lmax+1)),
Martin Reinecke's avatar
fix    
Martin Reinecke committed
148
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
Martin Reinecke's avatar
Martin Reinecke committed
149
        kernel(supp, ofactor, nthreads),
150
151
152
153
154
155
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1})
      {
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      MR_assert(slmT.Mmax()==lmax, "Sky lmax must be equal to Sky mmax");
      MR_assert(blmT.Lmax()==lmax, "Sky and beam lmax must be equal");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
Martin Reinecke's avatar
Martin Reinecke committed
156
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0.,cube.stride(1),cube.stride(0));
157
158
159
160
161
162
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      vector<double>lnorm(lmax+1);
      for (size_t i=0; i<=lmax; ++i)
        lnorm[i]=sqrt(4*pi/(2*i+1.));

163
164
165
166
167
168
169
170
171
      {
      for (size_t m=0; m<=lmax; ++m)
        for (size_t l=m; l<=lmax; ++l)
          a1(l,m) = slmT(l,m)*blmT(l,0).real()*T(lnorm[l]);
      auto m1 = cube.template subarray<2>({supp,supp,0},{ntheta,nphi,0});
      sharp_alm2map(a1.Alms().data(), m1.vdata(), *ginfo, *ainfo, 0, nthreads);
      correct(m1,0);
      }
      for (size_t k=1; k<=kmax; ++k)
172
173
174
175
176
177
178
179
        {
        for (size_t m=0; m<=lmax; ++m)
          for (size_t l=m; l<=lmax; ++l)
            {
            if (l<k)
              a1(l,m)=a2(l,m)=0.;
            else
              {
180
              auto tmp = -2.*blmT(l,k)*T(lnorm[l]);
Martin Reinecke's avatar
Martin Reinecke committed
181
              a1(l,m) = slmT(l,m)*tmp.real();
182
              a2(l,m) = slmT(l,m)*tmp.imag();
183
184
              }
            }
185
186
187
188
        auto m1 = cube.template subarray<2>({supp,supp,2*k-1},{ntheta,nphi,0});
        auto m2 = cube.template subarray<2>({supp,supp,2*k  },{ntheta,nphi,0});
        sharp_alm2map_spin(k, a1.Alms().data(), a2.Alms().data(), m1.vdata(),
          m2.vdata(), *ginfo, *ainfo, 0, nthreads);
189
        correct(m1,k);
190
        correct(m2,k);
191
192
193
194
195
196
        }
      // fill border regions
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
197
            double fct = (((k+1)/2)&1) ? -1 : 1;
198
            if (j2>=nphi) j2-=nphi;
199
200
            cube.v(supp-1-i,j2+supp,k) = fct*cube(supp+1+i,j+supp,k);
            cube.v(supp+ntheta+i,j2+supp,k) = fct*cube(supp+ntheta-2-i, j+supp,k);
201
202
203
204
205
206
207
208
209
210
            }
      for (size_t i=0; i<ntheta+2*supp; ++i)
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            cube.v(i,j,k) = cube(i,j+nphi,k);
            cube.v(i,j+nphi+supp,k) = cube(i,j+supp,k);
            }
      }

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    Interpolator(size_t lmax_, size_t kmax_, double epsilon, int nthreads_)
      : adjoint(true),
        lmax(lmax_),
        kmax(kmax_),
        nphi0(2*good_size_real(lmax+1)),
        ntheta0(nphi0/2+1),
        nphi(max<size_t>(20,2*good_size_real(size_t((2*lmax+1)*ofmin/2.)))),
        ntheta(nphi/2+1),
        nthreads(nthreads_),
        ofactor(double(nphi)/(2*lmax+1)),
        supp(ES_Kernel::get_supp(epsilon, ofactor)),
        kernel(supp, ofactor, nthreads),
        cube({ntheta+2*supp, nphi+2*supp, 2*kmax+1})
      {
      MR_assert((supp<=ntheta) && (supp<=nphi), "support too large!");
      cube.apply([](T &v){v=0.;});
      }

229
230
    void interpolx (const mav<T,2> &ptg, mav<T,1> &res) const
      {
231
      MR_assert(!adjoint, "cannot be called in adjoint mode");
232
233
      MR_assert(ptg.shape(0)==res.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
Martin Reinecke's avatar
Martin Reinecke committed
234
235
236
      double delta = 2./supp;
      double xdtheta = (ntheta-1)/pi,
             xdphi = nphi/(2*pi);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
237
      auto idx = getIdx(ptg);
Martin Reinecke's avatar
Martin Reinecke committed
238
      execStatic(idx.size(), nthreads, 0, [&](Scheduler &sched)
239
        {
Martin Reinecke's avatar
Martin Reinecke committed
240
241
242
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
243
          {
Martin Reinecke's avatar
Martin Reinecke committed
244
245
246
247
248
249
250
251
252
253
254
          size_t i=idx[ind];
          double f0=0.5*supp+ptg(i,0)*xdtheta;
          size_t i0 = size_t(f0+1.);
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
          double f1=0.5*supp+ptg(i,1)*xdphi;
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          double val=0;
          psiarr[0]=1.;
255
256
          double psi=ptg(i,2);
          double cpsi=cos(psi), spsi=sin(psi);
Martin Reinecke's avatar
Martin Reinecke committed
257
258
259
260
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
            psiarr[2*l-1]=cnpsi;
261
            psiarr[2*l]=snpsi;
Martin Reinecke's avatar
Martin Reinecke committed
262
263
264
265
266
267
268
269
270
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
          for (size_t j=0; j<supp; ++j)
            for (size_t k=0; k<supp; ++k)
              for (size_t l=0; l<2*kmax+1; ++l)
                val += cube(i0+j,i1+k,l)*wt[j]*wp[k]*psiarr[l];
          res.v(i) = val;
271
          }
Martin Reinecke's avatar
Martin Reinecke committed
272
        });
273
      }
274
275
276
277
278
279
280
281
282

    void deinterpolx (const mav<T,2> &ptg, const mav<T,1> &data)
      {
      MR_assert(adjoint, "can only be called in adjoint mode");
      MR_assert(ptg.shape(0)==data.shape(0), "dimension mismatch");
      MR_assert(ptg.shape(1)==3, "second dimension must have length 3");
      double delta = 2./supp;
      double xdtheta = (ntheta-1)/pi,
             xdphi = nphi/(2*pi);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
283
      auto idx = getIdx(ptg);
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
      execStatic(idx.size(), 1, 0, [&](Scheduler &sched) // not parallel yet
        {
        vector<T> wt(supp), wp(supp);
        vector<T> psiarr(2*kmax+1);
        while (auto rng=sched.getNext()) for(auto ind=rng.lo; ind<rng.hi; ++ind)
          {
          size_t i=idx[ind];
          double f0=0.5*supp+ptg(i,0)*xdtheta;
          size_t i0 = size_t(f0+1.);
          for (size_t t=0; t<supp; ++t)
            wt[t] = kernel((t+i0-f0)*delta - 1);
          double f1=0.5*supp+ptg(i,1)*xdphi;
          size_t i1 = size_t(f1+1.);
          for (size_t t=0; t<supp; ++t)
            wp[t] = kernel((t+i1-f1)*delta - 1);
          double val=data(i);
          psiarr[0]=1.;
          double psi=ptg(i,2);
          double cpsi=cos(psi), spsi=sin(psi);
          double cnpsi=cpsi, snpsi=spsi;
          for (size_t l=1; l<=kmax; ++l)
            {
            psiarr[2*l-1]=cnpsi;
            psiarr[2*l]=snpsi;
            const double tmp = snpsi*cpsi + cnpsi*spsi;
            cnpsi=cnpsi*cpsi - snpsi*spsi;
            snpsi=tmp;
            }
          for (size_t j=0; j<supp; ++j)
            for (size_t k=0; k<supp; ++k)
              for (size_t l=0; l<2*kmax+1; ++l)
                cube.v(i0+j,i1+k,l) += val*wt[j]*wp[k]*psiarr[l];
          }
        });
      }
    void getSlmx (const Alm<complex<T>> &blmT, Alm<complex<T>> &slmT)
      {
      MR_assert(adjoint, "can only be called in adjoint mode");
      Alm<complex<T>> a1(lmax, lmax), a2(lmax,lmax);
      auto ginfo = sharp_make_cc_geom_info(ntheta0,nphi0,0.,cube.stride(1),cube.stride(0));
      auto ainfo = sharp_make_triangular_alm_info(lmax,lmax,1);

      // move stuff from border regions onto the main grid
327
      for (size_t i=0; i<cube.shape(0); ++i)
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        for (size_t j=0; j<supp; ++j)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            cube.v(i,j+nphi,k) += cube(i,j,k);
            cube.v(i,j+supp,k) += cube(i,j+nphi+supp,k);
            }
      for (size_t i=0; i<supp; ++i)
        for (size_t j=0, j2=nphi/2; j<nphi; ++j,++j2)
          for (size_t k=0; k<cube.shape(2); ++k)
            {
            double fct = (((k+1)/2)&1) ? -1 : 1;
            if (j2>=nphi) j2-=nphi;
            cube.v(supp+1+i,j+supp,k) += fct*cube(supp-1-i,j2+supp,k);
            cube.v(supp+ntheta-2-i, j+supp,k) += fct*cube(supp+ntheta+i,j2+supp,k);
            }
343
344
345
346
347
348
349
350
351
352
353
354
355
356
for (size_t k=0; k<cube.shape(2); ++k)
{
double fct = (((k+1)/2)&1) ? -1 : 1;
for (size_t j=0,j2=nphi/2; j<nphi/2; ++j,++j2)
  {
  if (j2>=nphi) j2-=nphi;
  double tval = (cube(supp,j+supp,k) + fct*cube(supp,j2+supp,k));
  cube.v(supp,j+supp,k) = tval;
  cube.v(supp,j2+supp,k) = fct*tval;
  tval = (cube(supp+ntheta-1,j+supp,k) + fct*cube(supp+ntheta-1,j2+supp,k));
  cube.v(supp+ntheta-1,j+supp,k) = tval;
  cube.v(supp+ntheta-1,j2+supp,k) = fct*tval;
  }
}
357
358
359
360
361
362
363
364
365
366
      vector<double>lnorm(lmax+1);
      for (size_t i=0; i<=lmax; ++i)
        lnorm[i]=sqrt(4*pi/(2*i+1.));

      {
      auto m1 = cube.template subarray<2>({supp,supp,0},{ntheta,nphi,0});
      decorrect(m1,0);
      sharp_alm2map_adjoint(a1.Alms().vdata(), m1.data(), *ginfo, *ainfo, 0, nthreads);
      for (size_t m=0; m<=lmax; ++m)
        for (size_t l=m; l<=lmax; ++l)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
367
          slmT(l,m)=conj(a1(l,m))*blmT(l,0).real()*T(lnorm[l]);
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      }

      for (size_t k=1; k<=kmax; ++k)
        {
        auto m1 = cube.template subarray<2>({supp,supp,2*k-1},{ntheta,nphi,0});
        auto m2 = cube.template subarray<2>({supp,supp,2*k  },{ntheta,nphi,0});
        decorrect(m1,k);
        decorrect(m2,k);

        sharp_alm2map_spin_adjoint(k, a1.Alms().vdata(), a2.Alms().vdata(), m1.data(),
          m2.data(), *ginfo, *ainfo, 0, nthreads);
        for (size_t m=0; m<=lmax; ++m)
          for (size_t l=m; l<=lmax; ++l)
            {
            if (l>=k)
              {
              auto tmp = -2.*conj(blmT(l,k))*T(lnorm[l]);
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
385
386
              slmT(l,m) += conj(a1(l,m))*tmp.real();
              slmT(l,m) -= conj(a2(l,m))*tmp.imag();
387
388
389
390
              }
            }
        }
      }
391
392
393
394
  };

template<typename T> class PyInterpolator: public Interpolator<T>
  {
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
395
396
397
398
399
400
401
  protected:
    using Interpolator<T>::lmax;
    using Interpolator<T>::kmax;
    using Interpolator<T>::interpolx;
    using Interpolator<T>::deinterpolx;
    using Interpolator<T>::getSlmx;

402
  public:
403
404
    PyInterpolator(const py::array &slmT, const py::array &blmT,
      int64_t lmax, int64_t kmax, double epsilon, int nthreads=0)
405
406
      : Interpolator<T>(Alm<complex<T>>(to_mav<complex<T>,1>(slmT), lmax, lmax),
                        Alm<complex<T>>(to_mav<complex<T>,1>(blmT), lmax, kmax),
Martin Reinecke's avatar
Martin Reinecke committed
407
                        epsilon, nthreads) {}
408
409
410
    PyInterpolator(int64_t lmax, int64_t kmax, double epsilon, int nthreads=0)
      : Interpolator<T>(lmax, kmax, epsilon, nthreads) {}
    py::array interpol(const py::array &ptg) const
411
412
413
414
415
416
417
      {
      auto ptg2 = to_mav<T,2>(ptg);
      auto res = make_Pyarr<double>({ptg2.shape(0)});
      auto res2 = to_mav<double,1>(res,true);
      interpolx(ptg2, res2);
      return res;
      }
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

    void deinterpol(const py::array &ptg, const py::array &data)
      {
      auto ptg2 = to_mav<T,2>(ptg);
      auto data2 = to_mav<T,1>(data);
      deinterpolx(ptg2, data2);
      }
    py::array getSlm(const py::array &blmT_)
      {
      auto res = make_Pyarr<complex<T>>({Alm_Base::Num_Alms(lmax, lmax)});
      Alm<complex<T>> blmT(to_mav<complex<T>,1>(blmT_, false), lmax, kmax);
      auto slmT_=to_mav<complex<T>,1>(res, true);
slmT_.apply([](complex<T> &v){v=0;});
      Alm<complex<T>> slmT(slmT_, lmax, lmax);
      getSlmx(blmT, slmT);
      return res;
      }
435
436
  };

437
#if 1
Martin Reinecke's avatar
Martin Reinecke committed
438
439
440
template<typename T> py::array pyrotate_alm(const py::array &alm_, int64_t lmax,
  double psi, double theta, double phi)
  {
441
442
443
444
445
446
447
  auto a1 = to_mav<complex<T>,1>(alm_);
  auto alm = make_Pyarr<complex<T>>({a1.shape(0)});
  auto a2 = to_mav<complex<T>,1>(alm,true);
  for (size_t i=0; i<a1.shape(0); ++i) a2.v(i)=a1(i);
  auto blah = Alm<complex<T>>(a2,lmax,lmax);
  rotate_alm(blah, psi, theta, phi);
  return alm;
Martin Reinecke's avatar
Martin Reinecke committed
448
449
450
  }
#endif

451
452
453
454
455
456
457
} // unnamed namespace

PYBIND11_MODULE(interpol_ng, m)
  {
  using namespace pybind11::literals;

  py::class_<PyInterpolator<double>> (m, "PyInterpolator")
Martin Reinecke's avatar
Martin Reinecke committed
458
459
    .def(py::init<const py::array &, const py::array &, int64_t, int64_t, double, int>(),
      "sky"_a, "beam"_a, "lmax"_a, "kmax"_a, "epsilon"_a, "nthreads"_a)
460
461
462
463
    .def(py::init<int64_t, int64_t, double, int>(),
      "lmax"_a, "kmax"_a, "epsilon"_a, "nthreads"_a)
    .def ("interpol", &PyInterpolator<double>::interpol, "ptg"_a)
    .def ("deinterpol", &PyInterpolator<double>::deinterpol, "ptg"_a, "data"_a)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
464
    .def ("getSlm", &PyInterpolator<double>::getSlm, "blmT"_a);
465
#if 1
Martin Reinecke's avatar
Martin Reinecke committed
466
467
468
  m.def("rotate_alm", &pyrotate_alm<double>, "alm"_a, "lmax"_a, "psi"_a, "theta"_a,
    "phi"_a);
#endif
469
  }