rg_space.py 71.8 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2015 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
31
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
32
33
34

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
35

36
import itertools
Marco Selig's avatar
Marco Selig committed
37
import numpy as np
38
import os
39
from scipy.special import erf
Marco Selig's avatar
Marco Selig committed
40
41
42
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
Ultimanet's avatar
Ultimanet committed
43

44
45
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES

46
47
from nifty.space import Space
from nifty.field import Field
csongor's avatar
csongor committed
48

49
import nifty_fft
50
51
52
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
53
from nifty.nifty_paradict import rg_space_paradict
54
55
from nifty.nifty_power_indices import rg_power_indices
from nifty.nifty_random import random
Ultima's avatar
Ultima committed
56
import nifty.nifty_utilities as utilities
57

Ultima's avatar
Ultima committed
58
MPI = gdi[gc['mpi_module']]
59
RG_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Ultimanet's avatar
Ultimanet committed
60

Marco Selig's avatar
Marco Selig committed
61

62
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Parameters
        ----------
        num : {int, numpy.ndarray}
            Number of gridpoints or numbers of gridpoints along each axis.
        naxes : int, *optional*
            Number of axes (default: None).
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        hermitian : bool, *optional*
            Whether the fields living in the space follow hermitian symmetry or
            not (default: True).
        purelyreal : bool, *optional*
            Whether the field values are purely real (default: True).
        dist : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
        fourier : bool, *optional*
            Whether the space represents a Fourier or a position grid
            (default: False).

        Notes
        -----
        Only even numbers of grid points per axis are supported.
        The basis transformations between position `x` and Fourier mode `k`
        rely on (inverse) fast Fourier transformations using the
        :math:`exp(2 \pi i k^\dagger x)`-formulation.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing information on the axes of the
            space in the following form: The first entries give the grid-points
            along each axis in reverse order; the next entry is 0 if the
            fields defined on the space are purely real-valued, 1 if they are
            hermitian and complex, and 2 if they are not hermitian, but
            complex-valued; the last entries hold the information on whether
            the axes are centered on zero or not, containing a one for each
            zero-centered axis and a zero for each other one, in reverse order.
110
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
111
112
113
114
115
116
117
118
119
120
121
122
            Data type of the field values for a field defined on this space,
            either ``numpy.float64`` or ``numpy.complex128``.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for regular grids.
        vol : numpy.ndarray
            One-dimensional array containing the distances between two grid
            points along each axis, in reverse order. By default, the total
            length of each axis is assumed to be one.
        fourier : bool
            Whether or not the grid represents a Fourier basis.
    """
123
    epsilon = 0.0001  # relative precision for comparisons
Marco Selig's avatar
Marco Selig committed
124

125
    def __init__(self, shape, zerocenter=False, complexity=0, distances=None,
csongor's avatar
csongor committed
126
                 harmonic=False, fft_module=gc['fft_module']):
Marco Selig's avatar
Marco Selig committed
127
128
129
130
131
132
133
134
135
136
137
138
        """
            Sets the attributes for an rg_space class instance.

            Parameters
            ----------
            num : {int, numpy.ndarray}
                Number of gridpoints or numbers of gridpoints along each axis.
            naxes : int, *optional*
                Number of axes (default: None).
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
Ultimanet's avatar
Ultimanet committed
139
                (default: False).
Marco Selig's avatar
Marco Selig committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            hermitian : bool, *optional*
                Whether the fields living in the space follow hermitian
                symmetry or not (default: True).
            purelyreal : bool, *optional*
                Whether the field values are purely real (default: True).
            dist : {float, numpy.ndarray}, *optional*
                Distance between two grid points along each axis
                (default: None).
            fourier : bool, *optional*
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
156
        self._cache_dict = {'check_codomain': {}}
157
        self.paradict = rg_space_paradict(shape=shape,
158
159
                                          complexity=complexity,
                                          zerocenter=zerocenter)
160
        # set dtype
161
        if self.paradict['complexity'] == 0:
162
            self.dtype = np.dtype('float64')
Marco Selig's avatar
Marco Selig committed
163
        else:
164
            self.dtype = np.dtype('complex128')
165

166
        if distances is None:
167
168
169
            distances = 1 / np.array(self.shape, dtype=np.float)

        self.distances = distances
170
171
        self.harmonic = bool(harmonic)

172
173
        # Initializes the fast-fourier-transform machine, which will be used
        # to transform the space
Ultima's avatar
Ultima committed
174
        if not gc.validQ('fft_module', fft_module):
175
            about.warnings.cprint("WARNING: fft_module set to default.")
Ultima's avatar
Ultima committed
176
177
            fft_module = gc['fft_module']
        self.fft_machine = nifty_fft.fft_factory(fft_module)
178
179
180

        # Initialize the power_indices object which takes care of kindex,
        # pindex, rho and the pundex for a given set of parameters
csongor's avatar
csongor committed
181
182

        # TODO harmonic = True doesn't work yet
183
        if self.harmonic:
184
            self.power_indices = rg_power_indices(
185
                    shape=self.shape,
186
                    dgrid=distances,
187
188
                    zerocentered=self.paradict['zerocenter'],
                    allowed_distribution_strategies=RG_DISTRIBUTION_STRATEGIES)
189

190
191
    @property
    def para(self):
192
        temp = np.array(self.paradict['shape'] +
193
194
                        [self.paradict['complexity']] +
                        self.paradict['zerocenter'], dtype=int)
195
        return temp
196

197
198
    @para.setter
    def para(self, x):
199
        self.paradict['shape'] = x[:(np.size(x) - 1) // 2]
200
201
        self.paradict['zerocenter'] = x[(np.size(x) + 1) // 2:]
        self.paradict['complexity'] = x[(np.size(x) - 1) // 2]
Ultimanet's avatar
Ultimanet committed
202

Ultima's avatar
Ultima committed
203
204
205
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
206
            if key in ['_cache_dict', 'fft_machine', 'power_indices']:
Ultima's avatar
Ultima committed
207
208
209
210
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

211
212
213
214
215
216
217
218
219
220
221
    # __identiftier__ returns an object which contains all information needed
    # to uniquely identify a space. It returns a (immutable) tuple which
    # therefore can be compared.
    # The rg_space version of __identifier__ filters out the vars-information
    # which is describing the rg_space's structure
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
222
                if ii[0] not in ['_cache_dict', 'fft_machine',
csongor's avatar
csongor committed
223
                                 'power_indices']]
224
225
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))
Ultimanet's avatar
Ultimanet committed
226

227
    def copy(self):
228
        return RGSpace(shape=self.paradict['shape'],
229
230
                        complexity=self.paradict['complexity'],
                        zerocenter=self.paradict['zerocenter'],
231
                        distances=self.distances,
232
                        harmonic=self.harmonic,
csongor's avatar
csongor committed
233
                        fft_module=self.fft_machine.name)
234

235
236
    @property
    def shape(self):
237
        return tuple(self.paradict['shape'])
Marco Selig's avatar
Marco Selig committed
238

239
    def complement_cast(self, x, axis=None, hermitianize=True):
csongor's avatar
csongor committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        if axis is None:
            if x is not None and hermitianize and self.paradict['complexity']\
                    == 1 and not x.hermitian:
                about.warnings.cflush(
                     "WARNING: Data gets hermitianized. This operation is " +
                     "extremely expensive\n")
                x = utilities.hermitianize(x)
        else:
            # TODO hermitianize only on specific axis
            if x is not None and hermitianize and self.paradict['complexity']\
                    == 1 and not x.hermitian:
                about.warnings.cflush(
                     "WARNING: Data gets hermitianized. This operation is " +
                     "extremely expensive\n")
                x = utilities.hermitianize(x)
        return x
ultimanet's avatar
ultimanet committed
256

257
    def enforce_power(self, spec, size=None, kindex=None, codomain=None,
Ultima's avatar
Ultima committed
258
                      **kwargs):
Marco Selig's avatar
Marco Selig committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        """
            Provides a valid power spectrum array from a given object.

            Parameters
            ----------
            spec : {float, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.

            Returns
            -------
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
283
284
285
                Flag specifying if the spectral binning is performed on
                logarithmic scale or not; if set, the number of used bins is
                set automatically (if not given otherwise); by default no
286
                binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
287
            nbin : integer, *optional*
288
                Number of used spectral bins; if given `log` is set to
289
290
                ``False``; iintegers below the minimum of 3 induce an automatic
                setting; by default no binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
291
292
293
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
294
                (default: None).
Marco Selig's avatar
Marco Selig committed
295
        """
296
297
298
299
300
301
302

        # Setting up the local variables: kindex
        # The kindex is only necessary if spec is a function or if
        # the size is not set explicitly
        if kindex is None and (size is None or callable(spec)):
            # Determine which space should be used to get the kindex
            if self.harmonic:
303
304
                kindex_supply_space = self
            else:
305
306
                # Check if the given codomain is compatible with the space
                try:
307
308
309
                    assert(self.check_codomain(codomain))
                    kindex_supply_space = codomain
                except(AssertionError):
310
311
312
313
                    about.warnings.cprint("WARNING: Supplied codomain is " +
                                          "incompatible. Generating a " +
                                          "generic codomain. This can " +
                                          "be expensive!")
314
                    kindex_supply_space = self.get_codomain()
Ultima's avatar
Ultima committed
315

316
            kindex = kindex_supply_space.\
Ultima's avatar
Ultima committed
317
                power_indices.get_index_dict(**kwargs)['kindex']
318

319
320
321
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
322

Ultima's avatar
Ultima committed
323
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
324
        """
325
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
326
327
328

            Parameters
            ----------
329
330
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
331
332
333

            Returns
            -------
334
335
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
336
        """
337
338
        if codomain is None:
            return False
339

340
        if not isinstance(codomain, RGSpace):
341
342
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty rg_space."))
343

344
        # check number of number and size of axes
345
346
        if not np.all(np.array(self.paradict['shape']) ==
                      np.array(codomain.paradict['shape'])):
347
            return False
Ultima's avatar
Ultima committed
348

349
350
351
        # check harmonic flag
        if self.harmonic == codomain.harmonic:
            return False
Ultima's avatar
Ultima committed
352

353
354
355
356
        # check complexity-type
        # prepare the shorthands
        dcomp = self.paradict['complexity']
        cocomp = codomain.paradict['complexity']
Ultima's avatar
Ultima committed
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
        # Case 1: if the domain is copmleteley complex
        # -> the codomain must be complex, too
        if dcomp == 2:
            if cocomp != 2:
                return False
        # Case 2: domain is hermitian
        # -> codmomain can be real. If it is marked as hermitian or even
        # fully complex, a warning is raised
        elif dcomp == 1:
            if cocomp > 0:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is hermitian, hence the " +
                                      "codomain should be restricted to " +
                                      "real values!")
Ultima's avatar
Ultima committed
372

373
374
375
376
377
378
379
380
381
382
        # Case 3: domain is real
        # -> codmain should be hermitian
        elif dcomp == 0:
            if cocomp == 2:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is real, hence the " +
                                      "codomain should be restricted to " +
                                      "hermitian configurations!")
            elif cocomp == 0:
                return False
Ultima's avatar
Ultima committed
383

384
385
        # Check if the distances match, i.e. dist'=1/(num*dist)
        if not np.all(
386
                np.absolute(np.array(self.paradict['shape']) *
387
388
389
                            np.array(self.distances) *
                            np.array(codomain.distances) - 1) < self.epsilon):
            return False
Ultima's avatar
Ultima committed
390

391
        return True
392

393
    def get_codomain(self, cozerocenter=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
394
        """
395
396
397
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  either a shifted grid or a Fourier conjugate
            grid.
Marco Selig's avatar
Marco Selig committed
398
399
400

            Parameters
            ----------
401
402
403
404
405
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
Marco Selig's avatar
Marco Selig committed
406
407
408

            Returns
            -------
409
410
            codomain : nifty.rg_space
                A compatible codomain.
Marco Selig's avatar
Marco Selig committed
411

412
413
414
415
416
417
            Notes
            -----
            Possible arguments for `coname` are ``'f'`` in which case the
            codomain arises from a Fourier transformation, ``'i'`` in which
            case it arises from an inverse Fourier transformation.If no
            `coname` is given, the Fourier conjugate grid is produced.
Marco Selig's avatar
Marco Selig committed
418
        """
419
        naxes = len(self.shape)
420
421
422
423
424
425
426
        # Parse the cozerocenter input
        if(cozerocenter is None):
            cozerocenter = self.paradict['zerocenter']
        # if the input is something scalar, cast it to a boolean
        elif(np.isscalar(cozerocenter)):
            cozerocenter = bool(cozerocenter)
        # if it is not a scalar...
Marco Selig's avatar
Marco Selig committed
427
        else:
428
429
430
431
432
433
434
435
436
437
438
            # ...cast it to a numpy array of booleans
            cozerocenter = np.array(cozerocenter, dtype=np.bool)
            # if it was a list of length 1, extract the boolean
            if(np.size(cozerocenter) == 1):
                cozerocenter = np.asscalar(cozerocenter)
            # if the length of the input does not match the number of
            # dimensions, raise an exception
            elif(np.size(cozerocenter) != naxes):
                raise ValueError(about._errors.cstring(
                    "ERROR: size mismatch ( " +
                    str(np.size(cozerocenter)) + " <> " + str(naxes) + " )."))
Marco Selig's avatar
Marco Selig committed
439

440
        # Set up the initialization variables
441
442
443
        shape = self.paradict['shape']
        distances = 1 / (np.array(self.paradict['shape']) *
                         np.array(self.distances))
444
        fft_module = self.fft_machine.name
445
        complexity = {0: 1, 1: 0, 2: 2}[self.paradict['complexity']]
446
        harmonic = bool(not self.harmonic)
Marco Selig's avatar
Marco Selig committed
447

448
        new_space = RGSpace(shape,
449
450
                             zerocenter=cozerocenter,
                             complexity=complexity,
451
                             distances=distances,
452
                             harmonic=harmonic,
csongor's avatar
csongor committed
453
                             fft_module=fft_module)
454
        return new_space
Marco Selig's avatar
Marco Selig committed
455

456
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account possible complex-valuedness
            and hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
475
476
                - "gau" (normal distribution with zero-mean and a given
                    standard
Marco Selig's avatar
Marco Selig committed
477
478
479
480
481
482
483
484
485
486
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
487
488
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                *optional*
Marco Selig's avatar
Marco Selig committed
489
490
491
492
493
494
495
                Power spectrum (default: 1).
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band (default: None).
            codomain : nifty.rg_space, *optional*
Ultimanet's avatar
Ultimanet committed
496
                A compatible codomain (default: None).
Marco Selig's avatar
Marco Selig committed
497
            log : bool, *optional*
498
499
                Flag specifying if the spectral binning is performed on
                    logarithmic
Marco Selig's avatar
Marco Selig committed
500
501
502
503
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
504
505
                Number of used spectral bins; if given `log` is set to
                    ``False``;
Marco Selig's avatar
Marco Selig committed
506
507
508
509
510
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
511
                (default: None).
Ultimanet's avatar
Ultimanet committed
512
            vmin : float, *optional*
Marco Selig's avatar
Marco Selig committed
513
514
515
516
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
517
        # Parse the keyword arguments
518
        arg = random.parse_arguments(self, **kwargs)
519

520
521
522
        if arg is None:
            return self.cast(0)

Ultima's avatar
Ultima committed
523
524
        # Should the output be hermitianized?
        hermitianizeQ = (self.paradict['complexity'] == 1)
Ultimanet's avatar
Ultimanet committed
525

526
        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
Ultima's avatar
Ultima committed
527
        if arg['random'] == 'pm1' and not hermitianizeQ:
528
            sample = super(RGSpace, self).get_random_values(**arg)
529

Ultima's avatar
Ultima committed
530
        elif arg['random'] == 'pm1' and hermitianizeQ:
531
            sample = self.get_random_values(random='uni', vmin=-1, vmax=1)
Ultima's avatar
Ultima committed
532

533
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
534
535
536
537
538
                temp_data = sample.copy()
                sample[temp_data.real >= 0.5] = 1
                sample[(temp_data.real >= 0) * (temp_data.real < 0.5)] = -1
                sample[(temp_data.real < 0) * (temp_data.imag >= 0)] = 1j
                sample[(temp_data.real < 0) * (temp_data.imag < 0)] = -1j
539
540
                # Set the mirroring invariant points to real values
                product_list = []
541
                for s in self.shape:
542
543
544
545
546
547
548
549
550
551
552
553
                    # if the particular dimension has even length, set
                    # also the middle of the array to a real value
                    if s % 2 == 0:
                        product_list += [[0, s/2]]
                    else:
                        product_list += [[0]]

                for i in itertools.product(*product_list):
                    sample[i] = {1: 1,
                                 -1: -1,
                                 1j: 1,
                                 -1j: -1}[sample[i]]
Ultimanet's avatar
Ultimanet committed
554
            else:
Ultima's avatar
Ultima committed
555
556
                sample[sample >= 0] = 1
                sample[sample < 0] = -1
557

Ultima's avatar
Ultima committed
558
559
560
561
562
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

563
        # Case 2: normal distribution with zero-mean and a given standard
564
        #         deviation or variance
Ultima's avatar
Ultima committed
565
        elif arg['random'] == 'gau':
566
            sample = super(RGSpace, self).get_random_values(**arg)
567

568
            if hermitianizeQ:
Ultima's avatar
Ultima committed
569
                sample = utilities.hermitianize_gaussian(sample)
Ultimanet's avatar
Ultimanet committed
570

571
        # Case 3: uniform distribution
Ultima's avatar
Ultima committed
572
        elif arg['random'] == "uni" and not hermitianizeQ:
573
            sample = super(RGSpace, self).get_random_values(**arg)
574

Ultima's avatar
Ultima committed
575
        elif arg['random'] == "uni" and hermitianizeQ:
576
577
578
579
580
            # For a hermitian uniform sample, generate a gaussian one
            # and then convert it to a uniform one
            sample = self.get_random_values(random='gau')
            # Use the cummulative of the gaussian, the error function in order
            # to transform it to a uniform distribution.
581
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
582
                def temp_erf(x):
583
                    return erf(x.real) + 1j * erf(x.imag)
Ultimanet's avatar
Ultimanet committed
584
            else:
Ultima's avatar
Ultima committed
585
                def temp_erf(x):
586
                    return erf(x / np.sqrt(2))
Ultima's avatar
Ultima committed
587

588
            sample.apply_scalar_function(function=temp_erf, inplace=True)
589
590

            # Shift and stretch the uniform distribution into the given limits
591
            # sample = (sample + 1)/2 * (vmax-vmin) + vmin
Ultima's avatar
Ultima committed
592
593
            vmin = arg['vmin']
            vmax = arg['vmax']
594
595
            sample *= (vmax - vmin) / 2.
            sample += 1 / 2. * (vmax + vmin)
Marco Selig's avatar
Marco Selig committed
596

Ultima's avatar
Ultima committed
597
598
599
600
601
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

Ultima's avatar
Ultima committed
602
603
604
605
        elif(arg['random'] == "syn"):
            spec = arg['spec']
            kpack = arg['kpack']
            harmonic_domain = arg['harmonic_domain']
Ultima's avatar
Ultima committed
606
607
608
609
610
            lnb_dict = {}
            for name in ('log', 'nbin', 'binbounds'):
                if arg[name] != 'default':
                    lnb_dict[name] = arg[name]

611
612
613
            # Check whether there is a kpack available or not.
            # kpack is only used for computing kdict and extracting kindex
            # If not, take kdict and kindex from the fourier_domain
614
            if kpack is None:
Ultimanet's avatar
Ultimanet committed
615
                power_indices =\
Ultima's avatar
Ultima committed
616
                    harmonic_domain.power_indices.get_index_dict(**lnb_dict)
617

Ultimanet's avatar
Ultimanet committed
618
619
620
621
622
623
                kindex = power_indices['kindex']
                kdict = power_indices['kdict']
                kpack = [power_indices['pindex'], power_indices['kindex']]
            else:
                kindex = kpack[1]
                kdict = harmonic_domain.power_indices.\
624
625
626
627
628
629
630
631
                    _compute_kdict_from_pindex_kindex(kpack[0], kpack[1])

            # draw the random samples
            # Case 1: self is a harmonic space
            if self.harmonic:
                # subcase 1: self is real
                # -> simply generate a random field in fourier space and
                # weight the entries accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
632
                if self.paradict['complexity'] == 0:
Ultima's avatar
Ultima committed
633
634
635
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
636
637
638
639
640
                # subcase 2: self is hermitian but probably complex
                # -> generate a real field (in position space) and transform
                # it to harmonic space -> field in harmonic space is
                # hermitian. Now weight the modes accordingly to the
                # powerspectrum.
Ultimanet's avatar
Ultimanet committed
641
642
                elif self.paradict['complexity'] == 1:
                    temp_codomain = self.get_codomain()
Ultima's avatar
Ultima committed
643
644
645
                    sample = temp_codomain.get_random_values(random='gau',
                                                             mean=0,
                                                             std=1)
646
647
648
649
650
651

                    # In order to get the normalisation right, the sqrt
                    # of self.dim must be divided out.
                    # Furthermore, the normalisation in the fft routine
                    # must be undone
                    # TODO: Insert explanation
652
                    sqrt_of_dim = np.sqrt(self.dim)
Ultimanet's avatar
Ultimanet committed
653
654
655
                    sample /= sqrt_of_dim
                    sample = temp_codomain.calc_weight(sample, power=-1)

656
                    # tronsform the random field to harmonic space
Ultimanet's avatar
Ultimanet committed
657
                    sample = temp_codomain.\
658
659
660
661
                        calc_transform(sample, codomain=self)

                    # ensure that the kdict and the harmonic_sample have the
                    # same distribution strategy
Ultima's avatar
Ultima committed
662
663
664
665
666
                    try:
                        assert(kdict.distribution_strategy ==
                               sample.distribution_strategy)
                    except AttributeError:
                        pass
667
668
669
670

                # subcase 3: self is fully complex
                # -> generate a complex random field in harmonic space and
                # weight the modes accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
671
                elif self.paradict['complexity'] == 2:
Ultima's avatar
Ultima committed
672
673
674
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
675

676
                # apply the powerspectrum renormalization
677
678
679
680
681
682
683
                # extract the local data from kdict
                local_kdict = kdict.get_local_data()
                rescaler = np.sqrt(
                    spec[np.searchsorted(kindex, local_kdict)])
                sample.apply_scalar_function(lambda x: x * rescaler,
                                             inplace=True)

684
            # Case 2: self is a position space
Ultimanet's avatar
Ultimanet committed
685
            else:
686
687
                # get a suitable codomain
                temp_codomain = self.get_codomain()
Ultimanet's avatar
Ultimanet committed
688

689
690
691
                # subcase 1: self is a real space.
                # -> generate a hermitian sample with the codomain in harmonic
                # space and make a fourier transformation.
Ultimanet's avatar
Ultimanet committed
692
                if self.paradict['complexity'] == 0:
693
                    # check that the codomain is hermitian
Ultimanet's avatar
Ultimanet committed
694
                    assert(temp_codomain.paradict['complexity'] == 1)
695
696
697
698

                # subcase 2: self is hermitian but probably complex
                # -> generate a real-valued random sample in fourier space
                # and transform it to real space
Ultimanet's avatar
Ultimanet committed
699
                elif self.paradict['complexity'] == 1:
700
701
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 0)
Ultimanet's avatar
Ultimanet committed
702

703
704
705
706
707
708
                # subcase 3: self is fully complex
                # -> generate a complex-valued random sample in fourier space
                # and transform it to real space
                elif self.paradict['complexity'] == 2:
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 2)
Ultimanet's avatar
Ultimanet committed
709

710
711
                # Get a hermitian/real/complex sample in harmonic space from
                # the codomain
Ultima's avatar
Ultima committed
712
713
714
715
716
                sample = temp_codomain.get_random_values(random='syn',
                                                         pindex=kpack[0],
                                                         kindex=kpack[1],
                                                         spec=spec,
                                                         codomain=self,
Ultima's avatar
Ultima committed
717
                                                         **lnb_dict)
718

719
                # Perform a fourier transform
Ultima's avatar
Ultima committed
720
                sample = temp_codomain.calc_transform(sample, codomain=self)
Ultimanet's avatar
Ultimanet committed
721
722

            if self.paradict['complexity'] == 1:
Ultima's avatar
Ultima committed
723
724
725
726
                try:
                    sample.hermitian = True
                except AttributeError:
                    pass
727

Ultimanet's avatar
Ultimanet committed
728
729
        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
730
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
731

732
        return sample
Marco Selig's avatar
Marco Selig committed
733

734
    def calc_weight(self, x, axes=None, power=1):
Marco Selig's avatar
Marco Selig committed
735
736
737
738
739
740
741
742
743
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
744
745
            axes : None, tuple
                Ignored in this case since it's a scalar operation.
Marco Selig's avatar
Marco Selig committed
746
747
748
749
750
751

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
752
753
        # weight
        x = x * self.get_weight(power=power)
Ultimanet's avatar
Ultimanet committed
754
        return x
Marco Selig's avatar
Marco Selig committed
755

756
    def get_weight(self, power=1):
757
        return reduce(lambda x, y: x * y, self.distances)**power
758

Jait Dixit's avatar
Jait Dixit committed
759
    def calc_transform(self, x, codomain=None, axes=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
760
761
762
763
764
765
766
767
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.rg_space, *optional*
768
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
769
                (default: None).
770
            axes : None, tuple
Jait Dixit's avatar
Jait Dixit committed
771
                Axes in the array which should be transformed.
Marco Selig's avatar
Marco Selig committed
772
773
774
775
776
777

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
778

779
        if codomain is None:
Ultimanet's avatar
Ultimanet committed
780
            codomain = self.get_codomain()
781
782

        # Check if the given codomain is suitable for the transformation
783
        if not self.check_codomain(codomain):
784
            raise ValueError(about._errors.cstring(
785
                "ERROR: unsupported codomain."))
786

787
        if codomain.harmonic:
788
            # correct for forward fft
789
            x = self.calc_weight(x, power=1)
790
791
792

        # Perform the transformation
        Tx = self.fft_machine.transform(val=x, domain=self, codomain=codomain,
Jait Dixit's avatar
Jait Dixit committed
793
                                        axes=axes, **kwargs)
794

795
        if not codomain.harmonic:
796
            # correct for inverse fft
Ultimanet's avatar
Ultimanet committed
797
798
            Tx = codomain.calc_weight(Tx, power=-1)

799
800
        return Tx

801
    def calc_smooth(self, x, sigma=0, codomain=None, axes=None):
Marco Selig's avatar
Marco Selig committed
802
803
804
805
806
807
808
809
810
811
812
813
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).
814
815
            axes: None, tuple
                Axes which should be smoothed
Marco Selig's avatar
Marco Selig committed
816
817
818
819
820
821
822

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """

823
        # Check sigma
Ultimanet's avatar
Ultimanet committed
824
        if sigma == 0:
825
            return x.copy()
Ultimanet's avatar
Ultimanet committed
826
827
828
        elif sigma == -1:
            about.infos.cprint(
                "INFO: Resetting sigma to sqrt(2)*max(dist).")
829
            sigma = np.sqrt(2) * np.max(self.distances)
830
        elif(sigma < 0):
Marco Selig's avatar
Marco Selig committed
831
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultimanet's avatar
Ultimanet committed
832

833
        # if a codomain was given...
834
        if codomain is not None:
835
            # ...check if it was suitable
Ultimanet's avatar
Ultimanet committed
836
837
            if not self.check_codomain(codomain):
                raise ValueError(about._errors.cstring(
838
839
                    "ERROR: the given codomain is not a compatible!"))
        else:
Ultimanet's avatar
Ultimanet committed
840
841
            codomain = self.get_codomain()

842
843
844
        x = self.calc_transform(x, codomain=codomain, axes=axes)
        x = codomain._calc_smooth_helper(x, sigma, axes=axes)
        x = codomain.calc_transform(x, codomain=self, axes=axes)
845
        return x
846

847
    def _calc_smooth_helper(self, x, sigma, axes=None):
848
        # multiply the gaussian kernel, etc...
849
850
        if axes is None:
            axes = range(len(x.shape))
851
852

        # if x is hermitian it remains hermitian during smoothing
csongor's avatar
csongor committed
853
854
        # TODO look at this later
        # if self.datamodel in RG_DISTRIBUTION_STRATEGIES:
855
        remember_hermitianQ = x.hermitian
Ultimanet's avatar
Ultimanet committed
856

857
858
859
860
        # Define the Gaussian kernel function
        gaussian = lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

        # Define the variables in the dialect of the legacy smoothing.py
861
        nx = np.array(self.shape)
862
        dx = 1 / nx / self.distances
863
        # Multiply the data along each axis with suitable the gaussian kernel
Ultimanet's avatar
Ultimanet committed
864
        for i in range(len(nx)):
865
866
            # Prepare the exponent
            dk = 1. / nx[i] / dx[i]
Ultimanet's avatar
Ultimanet committed
867
            nk = nx[i]
868
            k = -0.5 * nk * dk + np.arange(nk) * dk
Ultimanet's avatar
Ultimanet committed
869
870
            if self.paradict['zerocenter'][i] == False:
                k = np.fft.fftshift(k)
871
            # compute the actual kernel vector
Ultimanet's avatar
Ultimanet committed
872
            gaussian_kernel_vector = gaussian(k)
873
            # blow up the vector to an array of shape (1,.,1,len(nk),1,.,1)
874
875
            blown_up_shape = [1, ] * len(x.shape)
            blown_up_shape[axes[i]] = len(gaussian_kernel_vector)
Ultimanet's avatar
Ultimanet committed
876
877
            gaussian_kernel_vector =\
                gaussian_kernel_vector.reshape(blown_up_shape)
878
879
            # apply the blown-up gaussian_kernel_vector
            x = x*gaussian_kernel_vector
880

881
        try:
882
            x.hermitian = remember_hermitianQ
883
884
        except AttributeError:
            pass
885

Ultimanet's avatar
Ultimanet committed
886
        return x
Marco Selig's avatar
Marco Selig committed
887

888
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.

            Other parameters
            ----------------
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
913
914
                Flag specifying if the spectral binning is performed on
                logarithmic
Marco Selig's avatar
Marco Selig committed
915
916
917
918
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
919
920
                Number of used spectral bins; if given `log` is set to
                ``False``;
Marco Selig's avatar
Marco Selig committed
921
922
923
924
925
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
926
                (default: None).
Marco Selig's avatar
Marco Selig committed
927
928

        """
Ultimanet's avatar
Ultimanet committed
929
930
        x = self.cast(x)

931
        # If self is a position space, delegate calc_power to its codomain.
932
        if not self.harmonic:
Marco Selig's avatar
Marco Selig committed
933
            try:
934
                codomain = kwargs['codomain']
Ultimanet's avatar
Ultimanet committed
935
936
            except(KeyError):
                codomain = self.get_codomain()
937

Ultimanet's avatar
Ultimanet committed
938
939
940
            y = self.calc_transform(x, codomain)
            kwargs.update({'codomain': self})
            return codomain.calc_power(y, **kwargs)
941
942
943
944
945

        # If some of the pindex, kindex or rho arrays are given explicitly,
        # favor them over those from the self.power_indices dictionary.
        # As the default value in kwargs.get(key, default) does NOT evaluate
        # lazy, a distinction of cases is necessary. Otherwise the
Ultima's avatar
Ultima committed
946
947
        # powerindices might be computed, although not needed
        if 'pindex' in kwargs and 'rho' in kwargs:
Ultimanet's avatar
Ultimanet committed
948
949
950
            pindex = kwargs.get('pindex')
            rho = kwargs.get('rho')
        else:
Ultima's avatar
Ultima committed
951
            power_indices = self.power_indices.get_index_dict(**kwargs)
Ultimanet's avatar
Ultimanet committed
952
953
            pindex = kwargs.get('pindex', power_indices['pindex'])
            rho = kwargs.get('rho', power_indices['rho'])
954

Ultimanet's avatar
Ultimanet committed
955
        fieldabs = abs(x)**2
956
        #power_spectrum = np.zeros(rho.shape)
957

958
        power_spectrum = pindex.bincount(weights=fieldabs)
959
960

        # Divide out the degeneracy factor
Ultimanet's avatar
Ultimanet committed
961
962
        power_spectrum /= rho
        return power_spectrum
Marco Selig's avatar
Marco Selig committed
963

Ultima's avatar
Ultima committed
964
965
    def get_plot(self,x,title="",vmin=None,vmax=None,power=None,unit="",
                 norm=None,cmap=None,cbar=True,other=None,legend=False,mono=True,**kwargs):
Marco Selig's avatar
Marco Selig committed
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).