plot.py 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
19
import os

20
21
import numpy as np

Martin Reinecke's avatar
fix    
Martin Reinecke committed
22
23
24
25
26
27
from . import dobj
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
37
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
38

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
39

Martin Reinecke's avatar
Martin Reinecke committed
40
41
42
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
43
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
44
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
45
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
46
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
52
53
54
55

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def _rgb_data(spectral_cube):
    _xyz = np.array(
          [[0.000160, 0.000662, 0.002362, 0.007242, 0.019110,
            0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
            0.314679, 0.357719, 0.383734, 0.386726, 0.370702,
            0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
            0.080507, 0.041072, 0.016172, 0.005132, 0.003816,
            0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
            0.236491, 0.304213, 0.376772, 0.451584, 0.529826,
            0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
            1.014160, 1.074300, 1.118520, 1.134300, 1.123990,
            1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
            0.647467, 0.535110, 0.431567, 0.343690, 0.268329,
            0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
            0.040851, 0.028623, 0.019941, 0.013842, 0.009577,
            0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
            0.001045, 0.000727, 0.000508, 0.000356, 0.000251,
            0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
            0.000033],
           [0.000017, 0.000072, 0.000253, 0.000769, 0.002004,
            0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
            0.038676, 0.049602, 0.062077, 0.074704, 0.089456,
            0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
            0.253589, 0.297665, 0.339133, 0.395379, 0.460777,
            0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
            0.875211, 0.923810, 0.961988, 0.982200, 0.991761,
            0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
            0.868934, 0.825623, 0.777405, 0.720353, 0.658341,
            0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
            0.283493, 0.228254, 0.179828, 0.140211, 0.107633,
            0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
            0.015905, 0.011130, 0.007749, 0.005375, 0.003718,
            0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
            0.000407, 0.000284, 0.000199, 0.000140, 0.000098,
            0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
            0.000013],
           [0.000705, 0.002928, 0.010482, 0.032344, 0.086011,
            0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
            1.553480, 1.798500, 1.967280, 2.027300, 1.994800,
            1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
            0.772125, 0.570060, 0.415254, 0.302356, 0.218502,
            0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
            0.030451, 0.020584, 0.013676, 0.007918, 0.003988,
            0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000]])

    MATRIX_SRGB_D65 = np.array(
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
112
            [[3.2404542, -1.5371385, -0.4985314],
113
             [-0.9692660,  1.8760108,  0.0415560],
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
114
             [0.0556434, -0.2040259,  1.0572252]])
115
116
117
118
119
120

    def _gammacorr(inp):
        mask = np.zeros(inp.shape, dtype=np.float64)
        mask[inp <= 0.0031308] = 1.
        r1 = 12.92*inp
        a = 0.055
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
121
        r2 = (1 + a) * (np.maximum(inp, 0.0031308) ** (1/2.4)) - a
122
123
124
        return r1*mask + r2*(1.-mask)

    def lambda2xyz(lam):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
125
126
127
        lammin = 380.
        lammax = 780.
        lam = np.asarray(lam, dtype=np.float64)
128
129
130
131
132
133
        lam = np.clip(lam, lammin, lammax)

        idx = (lam-lammin)/(lammax-lammin)*(_xyz.shape[1]-1)
        ii = np.maximum(0, np.minimum(79, int(idx)))
        w1 = 1.-(idx-ii)
        w2 = 1.-w1
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
134
        c = w1*_xyz[:, ii] + w2*_xyz[:, ii+1]
135
136
137
138
139
140
141
        return c

    def getxyz(n):
        E0, E1 = 1./700., 1./400.
        E = E0 + np.arange(n)*(E1-E0)/(n-1)
        res = np.zeros((3, n), dtype=np.float64)
        for i in range(n):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
142
            res[:, i] = lambda2xyz(1./E[i])
143
144
        return res

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
145
146
147
148
149
150
151
152
    def to_logscale(arr, lo, hi):
        res = arr.clip(lo, hi)
        res = np.log(res/hi)
        tmp = np.log(hi/lo)
        res += tmp
        res /= tmp
        return res

Philipp Arras's avatar
Philipp Arras committed
153
    shp = spectral_cube.shape[:-1]+(3,)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
154
    spectral_cube = spectral_cube.reshape((-1, spectral_cube.shape[-1]))
155
156
    xyz = getxyz(spectral_cube.shape[-1])
    xyz_data = np.tensordot(spectral_cube, xyz, axes=[-1, -1])
Martin Reinecke's avatar
Martin Reinecke committed
157
158
    xyz_data /= xyz_data.max()
    xyz_data = to_logscale(xyz_data, max(1e-3, xyz_data.min()), 1.)
159
    rgb_data = xyz_data.copy()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
160
161
    for x in range(xyz_data.shape[0]):
        rgb_data[x] = _gammacorr(np.matmul(MATRIX_SRGB_D65, xyz_data[x]))
Martin Reinecke's avatar
Martin Reinecke committed
162
    rgb_data = rgb_data.clip(0., 1.)
Philipp Arras's avatar
Philipp Arras committed
163
    return rgb_data.reshape(shp)
164
165


Martin Reinecke's avatar
Martin Reinecke committed
166
167
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
168
169
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
170
171
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
172

173
def _makeplot(name, block=True):
174
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
175
    if dobj.rank != 0:
176
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
177
        return
Martin Reinecke's avatar
Martin Reinecke committed
178
    if name is None:
179
180
181
        plt.show(block=block)
        if block:
            plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
182
183
        return
    extension = os.path.splitext(name)[1]
184
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
185
186
187
188
189
        plt.savefig(name)
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
190

Martin Reinecke's avatar
Martin Reinecke committed
191
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
192
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
193
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
194
195
196
197
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
198
199
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
200

Martin Reinecke's avatar
Martin Reinecke committed
201
202
203
204
205
206
207
208
209
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
256
257
258

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
259
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
260
261
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
262
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
263

Martin Reinecke's avatar
Martin Reinecke committed
264

265
def _plot1D(f, ax, **kwargs):
266
    import matplotlib.pyplot as plt
267

268
269
270
271
272
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
273
274
            if (len(dom) != 1):
                raise ValueError("input field must have exactly one domain")
275
276
277
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
278
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
279

clienhar's avatar
clienhar committed
280
    label = kwargs.pop("label", None)
281
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
282
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
283

Martin Reinecke's avatar
Martin Reinecke committed
284
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
285
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
286
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
287

clienhar's avatar
clienhar committed
288
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
289
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
290
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
291

clienhar's avatar
clienhar committed
292
293
294
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
295

Martin Reinecke's avatar
Martin Reinecke committed
296
    if isinstance(dom, RGSpace):
297
        plt.yscale(kwargs.pop("yscale", "linear"))
298
299
300
301
302
303
304
305
306
307
308
        npoints = dom.shape[0]
        dist = dom.distances[0]
        xcoord = np.arange(npoints, dtype=np.float64)*dist
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
Martin Reinecke's avatar
Martin Reinecke committed
309
    elif isinstance(dom, PowerSpace):
310
311
        plt.xscale(kwargs.pop("xscale", "log"))
        plt.yscale(kwargs.pop("yscale", "log"))
Philipp Arras's avatar
Philipp Arras committed
312
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
313
        for i, fld in enumerate(f):
314
315
            ycoord = fld.to_global_data_rw()
            ycoord[0] = ycoord[1]
Martin Reinecke's avatar
Martin Reinecke committed
316
317
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
318
        _limit_xy(**kwargs)
319
320
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
321
        return
322
323
324
325
326
327
328
329
    raise ValueError("Field type not(yet) supported")


def _plot2D(f, ax, **kwargs):
    import matplotlib.pyplot as plt

    dom = f.domain

330
331
332
333
334
335
336
337
    if len(dom) > 2:
        raise ValueError("DomainTuple can have at most two entries.")

    # check for multifrequency plotting
    have_rgb = False
    if len(dom) == 2:
        if (not isinstance(dom[1], RGSpace)) or len(dom[1].shape) != 1:
            raise TypeError("need 1D RGSpace as second domain")
338
339
340
341
342
343
        if dom[1].shape[0] == 1:
            from .sugar import from_global_data
            f = from_global_data(f.domain[0], f.to_global_data()[..., 0])
        else:
            rgb = _rgb_data(f.to_global_data())
            have_rgb = True
344
345
346

    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
Philipp Arras's avatar
Philipp Arras committed
347
348

    foo = kwargs.pop("aspect", None)
349
    aspect = {} if foo is None else {'aspect': foo}
350
351
352
353
354

    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    dom = dom[0]
355
356
    if not have_rgb:
        cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
357
358
359
360

    if isinstance(dom, RGSpace):
        nx, ny = dom.shape
        dx, dy = dom.distances
361
362
363
364
365
366
367
368
369
370
        if have_rgb:
            im = ax.imshow(
                rgb, extent=[0, nx*dx, 0, ny*dy], origin="lower", **norm,
                **aspect)
        else:
            im = ax.imshow(
                f.to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm, **aspect)
            plt.colorbar(im)
371
372
        _limit_xy(**kwargs)
        return
Martin Reinecke's avatar
Martin Reinecke committed
373
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
374
375
376
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
377
        if have_rgb:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
378
379
            res = np.full(shape=res.shape+(3,), fill_value=1.,
                          dtype=np.float64)
380

Martin Reinecke's avatar
Martin Reinecke committed
381
382
383
384
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
385
            base = pyHealpix.Healpix_Base(int(np.sqrt(dom.size//12)), "RING")
386
387
388
389
            if have_rgb:
                res[mask] = rgb[base.ang2pix(ptg)]
            else:
                res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
390
391
392
393
394
395
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
396
397
398
399
            if have_rgb:
                res[mask] = rgb[ilat*dom[0].nlon + ilon]
            else:
                res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
400
        plt.axis('off')
401
402
403
404
405
406
        if have_rgb:
            plt.imshow(res, origin="lower")
        else:
            plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                       cmap=cmap, origin="lower")
            plt.colorbar(orientation="horizontal")
407
408
409
410
411
412
413
414
415
416
417
418
        return
    raise ValueError("Field type not(yet) supported")


def _plot(f, ax, **kwargs):
    _register_cmaps()
    if isinstance(f, Field):
        f = [f]
    f = list(f)
    if len(f) == 0:
        raise ValueError("need something to plot")
    if not isinstance(f[0], Field):
Martin Reinecke's avatar
Martin Reinecke committed
419
        raise TypeError("incorrect data type")
420
    dom1 = f[0].domain
Martin Reinecke's avatar
Martin Reinecke committed
421
422
    if (len(dom1) == 1 and
        (isinstance(dom1[0], PowerSpace) or
423
424
         (isinstance(dom1[0], RGSpace) and
          len(dom1[0].shape) == 1))):
425
426
427
428
429
430
        _plot1D(f, ax, **kwargs)
        return
    else:
        if len(f) != 1:
            raise ValueError("need exactly one Field for 2D plot")
        _plot2D(f[0], ax, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
431
432
        return
    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
433

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
434

435
436
437
438
439
440
441
442
443
444
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
Philipp Arras's avatar
Docs    
Philipp Arras committed
445
446
        After doing one or more calls `add()`, one needs to call `output()` to
        show or save the plot.
447
448
449

        Parameters
        ----------
Philipp Arras's avatar
Philipp Arras committed
450
        f: Field or list of Field
Philipp Arras's avatar
Philipp Arras committed
451
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo    
Martin Reinecke committed
452
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
453
            If it is a list, all list members must be Fields defined over the
454
455
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
Philipp Arras's avatar
Docs    
Philipp Arras committed
456
            Title of the plot.
457
        xlabel: string
Philipp Arras's avatar
Philipp Arras committed
458
            Label for the x axis.
459
        ylabel: string
Philipp Arras's avatar
Philipp Arras committed
460
            Label for the y axis.
461
        [xyz]min, [xyz]max: float
Philipp Arras's avatar
Philipp Arras committed
462
            Limits for the values to plot.
463
        colormap: string
Philipp Arras's avatar
Philipp Arras committed
464
            Color map to use for the plot (if it is a 2D plot).
465
        linewidth: float or list of floats
Philipp Arras's avatar
Philipp Arras committed
466
            Line width.
467
        label: string of list of strings
Philipp Arras's avatar
Philipp Arras committed
468
            Annotation string.
469
        alpha: float or list of floats
Philipp Arras's avatar
Docs    
Philipp Arras committed
470
            Transparency value.
471
        """
Philipp Arras's avatar
Philipp Arras committed
472
473
        from .multi_field import MultiField
        if isinstance(f, MultiField):
Philipp Arras's avatar
Philipp Arras committed
474
475
476
477
478
479
480
481
482
            for kk in f.domain.keys():
                self._plots.append(f[kk])
                mykwargs = kwargs.copy()
                if 'title' in kwargs:
                    mykwargs['title'] = "{} {}".format(kk, kwargs['title'])
                else:
                    mykwargs['title'] = "{}".format(kk)
                self._kwargs.append(mykwargs)
            return
483
484
485
486
487
488
489
490
491
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
Philipp Arras's avatar
Philipp Arras committed
492
493
494
495
496
497
498
499
            Title of the full plot.
        nx, ny: int
            Number of subplots to use in x- and y-direction.
            Default: square root of the numer of plots, rounded up.
        xsize, ysize: float
            Dimensions of the full plot in inches. Default: 6.
        name: string
            If left empty, the plot will be shown on the screen,
500
            otherwise it will be written to a file with the given name.
Philipp Arras's avatar
Philipp Arras committed
501
            Supported extensions: .png and .pdf. Default: None.
502
503
504
        block: bool
            Override the blocking behavior of the non-interactive plotting
            mode. The plot will not be closed in this case but is left open!
505
506
507
508
509
510
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
511
512
513
514
515
516
517
518
        nx = kwargs.pop("nx", 0)
        ny = kwargs.pop("ny", 0)
        if nx == ny == 0:
            nx = ny = int(np.ceil(np.sqrt(nplot)))
        elif nx == 0:
            nx = np.ceil(nplot/ny)
        elif ny == 0:
            ny = np.ceil(nplot/nx)
519
520
521
522
523
524
525
526
527
528
529
530
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
531
        _makeplot(kwargs.pop("name", None), block=kwargs.pop("block", True))