nifty_rg.py 73.8 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2015 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
31
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
32
33
34

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
35

36
import itertools
Marco Selig's avatar
Marco Selig committed
37
import numpy as np
38
import os
39
from scipy.special import erf
Marco Selig's avatar
Marco Selig committed
40
41
42
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
Ultimanet's avatar
Ultimanet committed
43

44
45
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES

46
47
48
from nifty.nifty_core import point_space,\
                             field
import nifty_fft
49
50
51
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
52
from nifty.nifty_paradict import rg_space_paradict
53
54
from nifty.nifty_power_indices import rg_power_indices
from nifty.nifty_random import random
Ultima's avatar
Ultima committed
55
import nifty.nifty_utilities as utilities
56

Ultima's avatar
Ultima committed
57
MPI = gdi[gc['mpi_module']]
58
RG_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Ultimanet's avatar
Ultimanet committed
59

Marco Selig's avatar
Marco Selig committed
60

61
class rg_space(point_space):
Marco Selig's avatar
Marco Selig committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Parameters
        ----------
        num : {int, numpy.ndarray}
            Number of gridpoints or numbers of gridpoints along each axis.
        naxes : int, *optional*
            Number of axes (default: None).
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        hermitian : bool, *optional*
            Whether the fields living in the space follow hermitian symmetry or
            not (default: True).
        purelyreal : bool, *optional*
            Whether the field values are purely real (default: True).
        dist : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
        fourier : bool, *optional*
            Whether the space represents a Fourier or a position grid
            (default: False).

        Notes
        -----
        Only even numbers of grid points per axis are supported.
        The basis transformations between position `x` and Fourier mode `k`
        rely on (inverse) fast Fourier transformations using the
        :math:`exp(2 \pi i k^\dagger x)`-formulation.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing information on the axes of the
            space in the following form: The first entries give the grid-points
            along each axis in reverse order; the next entry is 0 if the
            fields defined on the space are purely real-valued, 1 if they are
            hermitian and complex, and 2 if they are not hermitian, but
            complex-valued; the last entries hold the information on whether
            the axes are centered on zero or not, containing a one for each
            zero-centered axis and a zero for each other one, in reverse order.
109
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
110
111
112
113
114
115
116
117
118
119
120
121
            Data type of the field values for a field defined on this space,
            either ``numpy.float64`` or ``numpy.complex128``.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for regular grids.
        vol : numpy.ndarray
            One-dimensional array containing the distances between two grid
            points along each axis, in reverse order. By default, the total
            length of each axis is assumed to be one.
        fourier : bool
            Whether or not the grid represents a Fourier basis.
    """
122
    epsilon = 0.0001  # relative precision for comparisons
Marco Selig's avatar
Marco Selig committed
123

124
    def __init__(self, shape, zerocenter=False, complexity=0, distances=None,
csongor's avatar
csongor committed
125
                 harmonic=False, fft_module=gc['fft_module']):
Marco Selig's avatar
Marco Selig committed
126
127
128
129
130
131
132
133
134
135
136
137
        """
            Sets the attributes for an rg_space class instance.

            Parameters
            ----------
            num : {int, numpy.ndarray}
                Number of gridpoints or numbers of gridpoints along each axis.
            naxes : int, *optional*
                Number of axes (default: None).
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
Ultimanet's avatar
Ultimanet committed
138
                (default: False).
Marco Selig's avatar
Marco Selig committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            hermitian : bool, *optional*
                Whether the fields living in the space follow hermitian
                symmetry or not (default: True).
            purelyreal : bool, *optional*
                Whether the field values are purely real (default: True).
            dist : {float, numpy.ndarray}, *optional*
                Distance between two grid points along each axis
                (default: None).
            fourier : bool, *optional*
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
Ultima's avatar
Ultima committed
155
        self._cache_dict = {'check_codomain':{}}
156
        self.paradict = rg_space_paradict(shape=shape,
157
158
                                          complexity=complexity,
                                          zerocenter=zerocenter)
159
        # set dtype
160
        if self.paradict['complexity'] == 0:
161
            self.dtype = np.dtype('float64')
Marco Selig's avatar
Marco Selig committed
162
        else:
163
            self.dtype = np.dtype('complex128')
164

165
        # set volume/distances
166
167
168
169
170
        naxes = len(self.paradict['shape'])
        if distances is None:
            distances = 1 / np.array(self.paradict['shape'], dtype=np.float)
        elif np.isscalar(distances):
            distances = np.ones(naxes, dtype=np.float) * distances
Marco Selig's avatar
Marco Selig committed
171
        else:
172
173
174
175
            distances = np.array(distances, dtype=np.float)
            if np.size(distances) == 1:
                distances = distances * np.ones(naxes, dtype=np.float)
            if np.size(distances) != naxes:
176
                raise ValueError(about._errors.cstring(
177
178
179
                    "ERROR: size mismatch ( " + str(np.size(distances)) +
                    " <> " + str(naxes) + " )."))
        if np.any(distances <= 0):
180
            raise ValueError(about._errors.cstring(
181
                "ERROR: nonpositive distance(s)."))
Marco Selig's avatar
Marco Selig committed
182

183
        self.distances = tuple(distances)
184
185
186
        self.harmonic = bool(harmonic)
        self.discrete = False

187
188
        # Initializes the fast-fourier-transform machine, which will be used
        # to transform the space
Ultima's avatar
Ultima committed
189
        if not gc.validQ('fft_module', fft_module):
190
            about.warnings.cprint("WARNING: fft_module set to default.")
Ultima's avatar
Ultima committed
191
192
            fft_module = gc['fft_module']
        self.fft_machine = nifty_fft.fft_factory(fft_module)
193
194
195

        # Initialize the power_indices object which takes care of kindex,
        # pindex, rho and the pundex for a given set of parameters
csongor's avatar
csongor committed
196
197

        # TODO harmonic = True doesn't work yet
198
        if self.harmonic:
199
200
            self.power_indices = rg_power_indices(
                    shape=self.get_shape(),
201
                    dgrid=distances,
202
203
                    zerocentered=self.paradict['zerocenter'],
                    allowed_distribution_strategies=RG_DISTRIBUTION_STRATEGIES)
204

205
206
    @property
    def para(self):
207
        temp = np.array(self.paradict['shape'] +
208
209
                        [self.paradict['complexity']] +
                        self.paradict['zerocenter'], dtype=int)
210
        return temp
211

212
213
    @para.setter
    def para(self, x):
214
        self.paradict['shape'] = x[:(np.size(x) - 1) // 2]
215
216
        self.paradict['zerocenter'] = x[(np.size(x) + 1) // 2:]
        self.paradict['complexity'] = x[(np.size(x) - 1) // 2]
Ultimanet's avatar
Ultimanet committed
217

Ultima's avatar
Ultima committed
218
219
220
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
221
            if key in ['_cache_dict', 'fft_machine', 'power_indices']:
Ultima's avatar
Ultima committed
222
223
224
225
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

226
227
228
229
230
231
232
233
234
235
236
    # __identiftier__ returns an object which contains all information needed
    # to uniquely identify a space. It returns a (immutable) tuple which
    # therefore can be compared.
    # The rg_space version of __identifier__ filters out the vars-information
    # which is describing the rg_space's structure
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
237
                if ii[0] not in ['_cache_dict', 'fft_machine',
csongor's avatar
csongor committed
238
                                 'power_indices']]
239
240
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))
Ultimanet's avatar
Ultimanet committed
241

242
    def copy(self):
243
        return rg_space(shape=self.paradict['shape'],
244
245
                        complexity=self.paradict['complexity'],
                        zerocenter=self.paradict['zerocenter'],
246
                        distances=self.distances,
247
                        harmonic=self.harmonic,
csongor's avatar
csongor committed
248
                        fft_module=self.fft_machine.name)
249
250

    def get_shape(self):
251
        return tuple(self.paradict['shape'])
Marco Selig's avatar
Marco Selig committed
252

253
254
255
256
    def _cast_to_d2o(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(rg_space, self)._cast_to_d2o(x=x,
                                                      dtype=dtype,
                                                      **kwargs)
Ultima's avatar
Ultima committed
257
        if x is not None and hermitianize and \
Ultima's avatar
Ultima committed
258
                self.paradict['complexity'] == 1 and not casted_x.hermitian:
259
260
261
262
            about.warnings.cflush(
                 "WARNING: Data gets hermitianized. This operation is " +
                 "extremely expensive\n")
            casted_x = utilities.hermitianize(casted_x)
Marco Selig's avatar
Marco Selig committed
263

264
        return casted_x
265

266
267
268
269
    def _cast_to_np(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(rg_space, self)._cast_to_np(x=x,
                                                     dtype=dtype,
                                                     **kwargs)
Ultima's avatar
Ultima committed
270
        if x is not None and hermitianize and self.paradict['complexity'] == 1:
271
272
273
274
            about.warnings.cflush(
                 "WARNING: Data gets hermitianized. This operation is " +
                 "extremely expensive\n")
            casted_x = utilities.hermitianize(casted_x)
Marco Selig's avatar
Marco Selig committed
275

276
        return casted_x
ultimanet's avatar
ultimanet committed
277

278
    def enforce_power(self, spec, size=None, kindex=None, codomain=None,
Ultima's avatar
Ultima committed
279
                      **kwargs):
Marco Selig's avatar
Marco Selig committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        """
            Provides a valid power spectrum array from a given object.

            Parameters
            ----------
            spec : {float, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.

            Returns
            -------
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
304
305
306
                Flag specifying if the spectral binning is performed on
                logarithmic scale or not; if set, the number of used bins is
                set automatically (if not given otherwise); by default no
307
                binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
308
            nbin : integer, *optional*
309
                Number of used spectral bins; if given `log` is set to
310
311
                ``False``; iintegers below the minimum of 3 induce an automatic
                setting; by default no binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
312
313
314
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
315
                (default: None).
Marco Selig's avatar
Marco Selig committed
316
        """
317
318
319
320
321
322
323

        # Setting up the local variables: kindex
        # The kindex is only necessary if spec is a function or if
        # the size is not set explicitly
        if kindex is None and (size is None or callable(spec)):
            # Determine which space should be used to get the kindex
            if self.harmonic:
324
325
                kindex_supply_space = self
            else:
326
327
                # Check if the given codomain is compatible with the space
                try:
328
329
330
                    assert(self.check_codomain(codomain))
                    kindex_supply_space = codomain
                except(AssertionError):
331
332
333
334
                    about.warnings.cprint("WARNING: Supplied codomain is " +
                                          "incompatible. Generating a " +
                                          "generic codomain. This can " +
                                          "be expensive!")
335
                    kindex_supply_space = self.get_codomain()
Ultima's avatar
Ultima committed
336

337
            kindex = kindex_supply_space.\
Ultima's avatar
Ultima committed
338
                power_indices.get_index_dict(**kwargs)['kindex']
339

340
341
342
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
343

Ultima's avatar
Ultima committed
344
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
345
        """
346
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
347
348
349

            Parameters
            ----------
350
351
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
352
353
354

            Returns
            -------
355
356
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
357
        """
358
359
        if codomain is None:
            return False
360

361
        if not isinstance(codomain, rg_space):
362
363
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty rg_space."))
364

365
        # check number of number and size of axes
366
367
        if not np.all(np.array(self.paradict['shape']) ==
                      np.array(codomain.paradict['shape'])):
368
            return False
Ultima's avatar
Ultima committed
369

370
371
372
        # check harmonic flag
        if self.harmonic == codomain.harmonic:
            return False
Ultima's avatar
Ultima committed
373

374
375
376
377
        # check complexity-type
        # prepare the shorthands
        dcomp = self.paradict['complexity']
        cocomp = codomain.paradict['complexity']
Ultima's avatar
Ultima committed
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
        # Case 1: if the domain is copmleteley complex
        # -> the codomain must be complex, too
        if dcomp == 2:
            if cocomp != 2:
                return False
        # Case 2: domain is hermitian
        # -> codmomain can be real. If it is marked as hermitian or even
        # fully complex, a warning is raised
        elif dcomp == 1:
            if cocomp > 0:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is hermitian, hence the " +
                                      "codomain should be restricted to " +
                                      "real values!")
Ultima's avatar
Ultima committed
393

394
395
396
397
398
399
400
401
402
403
        # Case 3: domain is real
        # -> codmain should be hermitian
        elif dcomp == 0:
            if cocomp == 2:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is real, hence the " +
                                      "codomain should be restricted to " +
                                      "hermitian configurations!")
            elif cocomp == 0:
                return False
Ultima's avatar
Ultima committed
404

405
406
        # Check if the distances match, i.e. dist'=1/(num*dist)
        if not np.all(
407
                np.absolute(np.array(self.paradict['shape']) *
408
409
410
                            np.array(self.distances) *
                            np.array(codomain.distances) - 1) < self.epsilon):
            return False
Ultima's avatar
Ultima committed
411

412
        return True
413

414
    def get_codomain(self, cozerocenter=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
415
        """
416
417
418
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  either a shifted grid or a Fourier conjugate
            grid.
Marco Selig's avatar
Marco Selig committed
419
420
421

            Parameters
            ----------
422
423
424
425
426
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
Marco Selig's avatar
Marco Selig committed
427
428
429

            Returns
            -------
430
431
            codomain : nifty.rg_space
                A compatible codomain.
Marco Selig's avatar
Marco Selig committed
432

433
434
435
436
437
438
            Notes
            -----
            Possible arguments for `coname` are ``'f'`` in which case the
            codomain arises from a Fourier transformation, ``'i'`` in which
            case it arises from an inverse Fourier transformation.If no
            `coname` is given, the Fourier conjugate grid is produced.
Marco Selig's avatar
Marco Selig committed
439
        """
440
441
442
443
444
445
446
447
        naxes = len(self.get_shape())
        # Parse the cozerocenter input
        if(cozerocenter is None):
            cozerocenter = self.paradict['zerocenter']
        # if the input is something scalar, cast it to a boolean
        elif(np.isscalar(cozerocenter)):
            cozerocenter = bool(cozerocenter)
        # if it is not a scalar...
Marco Selig's avatar
Marco Selig committed
448
        else:
449
450
451
452
453
454
455
456
457
458
459
            # ...cast it to a numpy array of booleans
            cozerocenter = np.array(cozerocenter, dtype=np.bool)
            # if it was a list of length 1, extract the boolean
            if(np.size(cozerocenter) == 1):
                cozerocenter = np.asscalar(cozerocenter)
            # if the length of the input does not match the number of
            # dimensions, raise an exception
            elif(np.size(cozerocenter) != naxes):
                raise ValueError(about._errors.cstring(
                    "ERROR: size mismatch ( " +
                    str(np.size(cozerocenter)) + " <> " + str(naxes) + " )."))
Marco Selig's avatar
Marco Selig committed
460

461
        # Set up the initialization variables
462
463
464
        shape = self.paradict['shape']
        distances = 1 / (np.array(self.paradict['shape']) *
                         np.array(self.distances))
465
        fft_module = self.fft_machine.name
466
        complexity = {0: 1, 1: 0, 2: 2}[self.paradict['complexity']]
467
        harmonic = bool(not self.harmonic)
Marco Selig's avatar
Marco Selig committed
468

469
        new_space = rg_space(shape,
470
471
                             zerocenter=cozerocenter,
                             complexity=complexity,
472
                             distances=distances,
473
                             harmonic=harmonic,
csongor's avatar
csongor committed
474
                             fft_module=fft_module)
475
        return new_space
Marco Selig's avatar
Marco Selig committed
476

477
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account possible complex-valuedness
            and hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
496
497
                - "gau" (normal distribution with zero-mean and a given
                    standard
Marco Selig's avatar
Marco Selig committed
498
499
500
501
502
503
504
505
506
507
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
508
509
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                *optional*
Marco Selig's avatar
Marco Selig committed
510
511
512
513
514
515
516
                Power spectrum (default: 1).
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band (default: None).
            codomain : nifty.rg_space, *optional*
Ultimanet's avatar
Ultimanet committed
517
                A compatible codomain (default: None).
Marco Selig's avatar
Marco Selig committed
518
            log : bool, *optional*
519
520
                Flag specifying if the spectral binning is performed on
                    logarithmic
Marco Selig's avatar
Marco Selig committed
521
522
523
524
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
525
526
                Number of used spectral bins; if given `log` is set to
                    ``False``;
Marco Selig's avatar
Marco Selig committed
527
528
529
530
531
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
532
                (default: None).
Ultimanet's avatar
Ultimanet committed
533
            vmin : float, *optional*
Marco Selig's avatar
Marco Selig committed
534
535
536
537
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
538
        # Parse the keyword arguments
539
        arg = random.parse_arguments(self, **kwargs)
540

541
542
543
        if arg is None:
            return self.cast(0)

Ultima's avatar
Ultima committed
544
545
        # Should the output be hermitianized?
        hermitianizeQ = (self.paradict['complexity'] == 1)
Ultimanet's avatar
Ultimanet committed
546

547
        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
Ultima's avatar
Ultima committed
548
549
        if arg['random'] == 'pm1' and not hermitianizeQ:
            sample = super(rg_space, self).get_random_values(**arg)
550

Ultima's avatar
Ultima committed
551
        elif arg['random'] == 'pm1' and hermitianizeQ:
552
            sample = self.get_random_values(random='uni', vmin=-1, vmax=1)
Ultima's avatar
Ultima committed
553

554
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
555
556
557
558
559
                temp_data = sample.copy()
                sample[temp_data.real >= 0.5] = 1
                sample[(temp_data.real >= 0) * (temp_data.real < 0.5)] = -1
                sample[(temp_data.real < 0) * (temp_data.imag >= 0)] = 1j
                sample[(temp_data.real < 0) * (temp_data.imag < 0)] = -1j
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                # Set the mirroring invariant points to real values
                product_list = []
                for s in self.get_shape():
                    # if the particular dimension has even length, set
                    # also the middle of the array to a real value
                    if s % 2 == 0:
                        product_list += [[0, s/2]]
                    else:
                        product_list += [[0]]

                for i in itertools.product(*product_list):
                    sample[i] = {1: 1,
                                 -1: -1,
                                 1j: 1,
                                 -1j: -1}[sample[i]]
Ultimanet's avatar
Ultimanet committed
575
            else:
Ultima's avatar
Ultima committed
576
577
                sample[sample >= 0] = 1
                sample[sample < 0] = -1
578

Ultima's avatar
Ultima committed
579
580
581
582
583
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

584
        # Case 2: normal distribution with zero-mean and a given standard
585
        #         deviation or variance
Ultima's avatar
Ultima committed
586
587
        elif arg['random'] == 'gau':
            sample = super(rg_space, self).get_random_values(**arg)
588

589
            if hermitianizeQ:
Ultima's avatar
Ultima committed
590
                sample = utilities.hermitianize_gaussian(sample)
Ultimanet's avatar
Ultimanet committed
591

592
        # Case 3: uniform distribution
Ultima's avatar
Ultima committed
593
594
        elif arg['random'] == "uni" and not hermitianizeQ:
            sample = super(rg_space, self).get_random_values(**arg)
595

Ultima's avatar
Ultima committed
596
        elif arg['random'] == "uni" and hermitianizeQ:
597
598
599
600
601
            # For a hermitian uniform sample, generate a gaussian one
            # and then convert it to a uniform one
            sample = self.get_random_values(random='gau')
            # Use the cummulative of the gaussian, the error function in order
            # to transform it to a uniform distribution.
602
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
603
                def temp_erf(x):
604
                    return erf(x.real) + 1j * erf(x.imag)
Ultimanet's avatar
Ultimanet committed
605
            else:
Ultima's avatar
Ultima committed
606
                def temp_erf(x):
607
                    return erf(x / np.sqrt(2))
Ultima's avatar
Ultima committed
608

609
            sample.apply_scalar_function(function=temp_erf, inplace=True)
610
611

            # Shift and stretch the uniform distribution into the given limits
612
            # sample = (sample + 1)/2 * (vmax-vmin) + vmin
Ultima's avatar
Ultima committed
613
614
            vmin = arg['vmin']
            vmax = arg['vmax']
615
616
            sample *= (vmax - vmin) / 2.
            sample += 1 / 2. * (vmax + vmin)
Marco Selig's avatar
Marco Selig committed
617

Ultima's avatar
Ultima committed
618
619
620
621
622
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

Ultima's avatar
Ultima committed
623
624
625
626
        elif(arg['random'] == "syn"):
            spec = arg['spec']
            kpack = arg['kpack']
            harmonic_domain = arg['harmonic_domain']
Ultima's avatar
Ultima committed
627
628
629
630
631
            lnb_dict = {}
            for name in ('log', 'nbin', 'binbounds'):
                if arg[name] != 'default':
                    lnb_dict[name] = arg[name]

632
633
634
            # Check whether there is a kpack available or not.
            # kpack is only used for computing kdict and extracting kindex
            # If not, take kdict and kindex from the fourier_domain
635
            if kpack is None:
Ultimanet's avatar
Ultimanet committed
636
                power_indices =\
Ultima's avatar
Ultima committed
637
                    harmonic_domain.power_indices.get_index_dict(**lnb_dict)
638

Ultimanet's avatar
Ultimanet committed
639
640
641
642
643
644
                kindex = power_indices['kindex']
                kdict = power_indices['kdict']
                kpack = [power_indices['pindex'], power_indices['kindex']]
            else:
                kindex = kpack[1]
                kdict = harmonic_domain.power_indices.\
645
646
647
648
649
650
651
652
                    _compute_kdict_from_pindex_kindex(kpack[0], kpack[1])

            # draw the random samples
            # Case 1: self is a harmonic space
            if self.harmonic:
                # subcase 1: self is real
                # -> simply generate a random field in fourier space and
                # weight the entries accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
653
                if self.paradict['complexity'] == 0:
Ultima's avatar
Ultima committed
654
655
656
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
657
658
659
660
661
                # subcase 2: self is hermitian but probably complex
                # -> generate a real field (in position space) and transform
                # it to harmonic space -> field in harmonic space is
                # hermitian. Now weight the modes accordingly to the
                # powerspectrum.
Ultimanet's avatar
Ultimanet committed
662
663
                elif self.paradict['complexity'] == 1:
                    temp_codomain = self.get_codomain()
Ultima's avatar
Ultima committed
664
665
666
                    sample = temp_codomain.get_random_values(random='gau',
                                                             mean=0,
                                                             std=1)
667
668
669
670
671
672

                    # In order to get the normalisation right, the sqrt
                    # of self.dim must be divided out.
                    # Furthermore, the normalisation in the fft routine
                    # must be undone
                    # TODO: Insert explanation
673
                    sqrt_of_dim = np.sqrt(self.get_dim())
Ultimanet's avatar
Ultimanet committed
674
675
676
                    sample /= sqrt_of_dim
                    sample = temp_codomain.calc_weight(sample, power=-1)

677
                    # tronsform the random field to harmonic space
Ultimanet's avatar
Ultimanet committed
678
                    sample = temp_codomain.\
679
680
681
682
                        calc_transform(sample, codomain=self)

                    # ensure that the kdict and the harmonic_sample have the
                    # same distribution strategy
Ultima's avatar
Ultima committed
683
684
685
686
687
                    try:
                        assert(kdict.distribution_strategy ==
                               sample.distribution_strategy)
                    except AttributeError:
                        pass
688
689
690
691

                # subcase 3: self is fully complex
                # -> generate a complex random field in harmonic space and
                # weight the modes accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
692
                elif self.paradict['complexity'] == 2:
Ultima's avatar
Ultima committed
693
694
695
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
696

697
                # apply the powerspectrum renormalization
698
699
700
701
702
703
704
                # extract the local data from kdict
                local_kdict = kdict.get_local_data()
                rescaler = np.sqrt(
                    spec[np.searchsorted(kindex, local_kdict)])
                sample.apply_scalar_function(lambda x: x * rescaler,
                                             inplace=True)

705
            # Case 2: self is a position space
Ultimanet's avatar
Ultimanet committed
706
            else:
707
708
                # get a suitable codomain
                temp_codomain = self.get_codomain()
Ultimanet's avatar
Ultimanet committed
709

710
711
712
                # subcase 1: self is a real space.
                # -> generate a hermitian sample with the codomain in harmonic
                # space and make a fourier transformation.
Ultimanet's avatar
Ultimanet committed
713
                if self.paradict['complexity'] == 0:
714
                    # check that the codomain is hermitian
Ultimanet's avatar
Ultimanet committed
715
                    assert(temp_codomain.paradict['complexity'] == 1)
716
717
718
719

                # subcase 2: self is hermitian but probably complex
                # -> generate a real-valued random sample in fourier space
                # and transform it to real space
Ultimanet's avatar
Ultimanet committed
720
                elif self.paradict['complexity'] == 1:
721
722
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 0)
Ultimanet's avatar
Ultimanet committed
723

724
725
726
727
728
729
                # subcase 3: self is fully complex
                # -> generate a complex-valued random sample in fourier space
                # and transform it to real space
                elif self.paradict['complexity'] == 2:
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 2)
Ultimanet's avatar
Ultimanet committed
730

731
732
                # Get a hermitian/real/complex sample in harmonic space from
                # the codomain
Ultima's avatar
Ultima committed
733
734
735
736
737
                sample = temp_codomain.get_random_values(random='syn',
                                                         pindex=kpack[0],
                                                         kindex=kpack[1],
                                                         spec=spec,
                                                         codomain=self,
Ultima's avatar
Ultima committed
738
                                                         **lnb_dict)
739

740
                # Perform a fourier transform
Ultima's avatar
Ultima committed
741
                sample = temp_codomain.calc_transform(sample, codomain=self)
Ultimanet's avatar
Ultimanet committed
742
743

            if self.paradict['complexity'] == 1:
Ultima's avatar
Ultima committed
744
745
746
747
                try:
                    sample.hermitian = True
                except AttributeError:
                    pass
748

Ultimanet's avatar
Ultimanet committed
749
750
        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
751
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
752

753
        return sample
Marco Selig's avatar
Marco Selig committed
754

Ultimanet's avatar
Ultimanet committed
755
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
771
772
        # weight
        x = x * self.get_weight(power=power)
Ultimanet's avatar
Ultimanet committed
773
        return x
Marco Selig's avatar
Marco Selig committed
774

775
    def get_weight(self, power=1):
776
        return np.prod(self.distances)**power
777

778
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
779
        """
780
781
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
782
783
784
785
786
787
788
789
790
791
792
793
794

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
795
796
        x = self.cast(x)
        y = self.cast(y)
797

798
        result = x.vdot(y)
799

800
        if np.isreal(result):
801
            result = np.asscalar(np.real(result))
Ultimanet's avatar
Ultimanet committed
802
        if self.paradict['complexity'] != 2:
803
804
            if (np.absolute(result.imag) >
                    self.epsilon**2 * np.absolute(result.real)):
Ultimanet's avatar
Ultimanet committed
805
806
                about.warnings.cprint(
                    "WARNING: Discarding considerable imaginary part.")
807
            result = np.asscalar(np.real(result))
808
        return result
Marco Selig's avatar
Marco Selig committed
809

810
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
811
812
813
814
815
816
817
818
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.rg_space, *optional*
819
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
820
821
822
823
824
825
826
                (default: None).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
827
        x = self.cast(x)
828

829
        if codomain is None:
Ultimanet's avatar
Ultimanet committed
830
            codomain = self.get_codomain()
831
832

        # Check if the given codomain is suitable for the transformation
833
        if not self.check_codomain(codomain):
834
            raise ValueError(about._errors.cstring(
835
                "ERROR: unsupported codomain."))
836

837
        if codomain.harmonic:
838
            # correct for forward fft
839
            x = self.calc_weight(x, power=1)
840
841
842

        # Perform the transformation
        Tx = self.fft_machine.transform(val=x, domain=self, codomain=codomain,
843
844
                                        **kwargs)

845
        if not codomain.harmonic:
846
            # correct for inverse fft
Ultimanet's avatar
Ultimanet committed
847
848
            Tx = codomain.calc_weight(Tx, power=-1)

849
850
851
        # when the codomain space is purely real, the result of the
        # transformation must be corrected accordingly. Using the casting
        # method of codomain is sufficient
852
        # TODO: Let .transform  yield the correct dtype
853
        Tx = codomain.cast(Tx)
854

855
856
        return Tx

Ultimanet's avatar
Ultimanet committed
857
    def calc_smooth(self, x, sigma=0, codomain=None):
Marco Selig's avatar
Marco Selig committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """

877
        # Check sigma
Ultimanet's avatar
Ultimanet committed
878
        if sigma == 0:
Ultima's avatar
Ultima committed
879
            return self.unary_operation(x, op='copy')
Ultimanet's avatar
Ultimanet committed
880
881
882
        elif sigma == -1:
            about.infos.cprint(
                "INFO: Resetting sigma to sqrt(2)*max(dist).")
883
            sigma = np.sqrt(2) * np.max(self.distances)
884
        elif(sigma < 0):
Marco Selig's avatar
Marco Selig committed
885
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultimanet's avatar
Ultimanet committed
886

887
        # if a codomain was given...
888
        if codomain is not None:
889
            # ...check if it was suitable
Ultimanet's avatar
Ultimanet committed
890
891
            if not self.check_codomain(codomain):
                raise ValueError(about._errors.cstring(
892
893
                    "ERROR: the given codomain is not a compatible!"))
        else:
Ultimanet's avatar
Ultimanet committed
894
895
            codomain = self.get_codomain()

896
897
898
899
        x = self.calc_transform(x, codomain=codomain)
        x = codomain._calc_smooth_helper(x, sigma)
        x = codomain.calc_transform(x, codomain=self)
        return x
900

901
902
    def _calc_smooth_helper(self, x, sigma):
        # multiply the gaussian kernel, etc...
903
904
905
906
907

        # Cast the input
        x = self.cast(x)

        # if x is hermitian it remains hermitian during smoothing
csongor's avatar
csongor committed
908
909
910
        # TODO look at this later
        # if self.datamodel in RG_DISTRIBUTION_STRATEGIES:
        remeber_hermitianQ = x.hermitian
Ultimanet's avatar
Ultimanet committed
911

912
913
914
915
        # Define the Gaussian kernel function
        gaussian = lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

        # Define the variables in the dialect of the legacy smoothing.py
916
917
        nx = np.array(self.get_shape())
        dx = 1 / nx / self.distances
918
        # Multiply the data along each axis with suitable the gaussian kernel
Ultimanet's avatar
Ultimanet committed
919
        for i in range(len(nx)):
920
921
            # Prepare the exponent
            dk = 1. / nx[i] / dx[i]
Ultimanet's avatar
Ultimanet committed
922
            nk = nx[i]
923
            k = -0.5 * nk * dk + np.arange(nk) * dk
Ultimanet's avatar
Ultimanet committed
924
925
            if self.paradict['zerocenter'][i] == False:
                k = np.fft.fftshift(k)
926
            # compute the actual kernel vector
Ultimanet's avatar
Ultimanet committed
927
            gaussian_kernel_vector = gaussian(k)
928
929
            # blow up the vector to an array of shape (1,.,1,len(nk),1,.,1)
            blown_up_shape = [1, ] * len(nx)
Ultimanet's avatar
Ultimanet committed
930
931
932
            blown_up_shape[i] = len(gaussian_kernel_vector)
            gaussian_kernel_vector =\
                gaussian_kernel_vector.reshape(blown_up_shape)
933
934
            # apply the blown-up gaussian_kernel_vector
            x = x*gaussian_kernel_vector
935

936
        try:
937
            x.hermitian = remeber_hermitianQ
938
939
        except AttributeError:
            pass
940

Ultimanet's avatar
Ultimanet committed
941
        return x
Marco Selig's avatar
Marco Selig committed
942

943
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.

            Other parameters
            ----------------
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
968
969
                Flag specifying if the spectral binning is performed on
                logarithmic
Marco Selig's avatar
Marco Selig committed
970
971
972
973
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
974
975
                Number of used spectral bins; if given `log` is set to
                ``False``;
Marco Selig's avatar
Marco Selig committed
976
977
978
979
980
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
981
                (default: None).
Marco Selig's avatar
Marco Selig committed
982
983

        """
Ultimanet's avatar
Ultimanet committed
984
985
        x = self.cast(x)

986
        # If self is a position space, delegate calc_power to its codomain.
987
        if not self.harmonic:
Marco Selig's avatar
Marco Selig committed
988
            try:
989
                codomain = kwargs['codomain']
Ultimanet's avatar
Ultimanet committed
990
991
            except(KeyError):
                codomain = self.get_codomain()
992

Ultimanet's avatar
Ultimanet committed
993
994
995
            y = self.calc_transform(x, codomain)
            kwargs.update({'codomain': self})
            return codomain.calc_power(y, **kwargs)
996
997
998
999
1000

        # If some of the pindex, kindex or rho arrays are given explicitly,
        # favor them over those from the self.power_indices dictionary.
        # As the default value in kwargs.get(key, default) does NOT evaluate
        # lazy, a distinction of cases is necessary. Otherwise the
Ultima's avatar
Ultima committed
1001
1002
        # powerindices might be computed, although not needed
        if 'pindex' in kwargs and 'rho' in kwargs:
Ultimanet's avatar
Ultimanet committed
1003
1004
1005
            pindex = kwargs.get('pindex')
            rho = kwargs.get('rho')
        else:
Ultima's avatar
Ultima committed
1006
            power_indices = self.power_indices.get_index_dict(**kwargs)
Ultimanet's avatar
Ultimanet committed
1007
1008
            pindex = kwargs.get('pindex', power_indices['pindex'])
            rho = kwargs.get('rho', power_indices['rho'])
1009

Ultimanet's avatar
Ultimanet committed
1010
        fieldabs = abs(x)**2
1011
        power_spectrum = np.zeros(rho.shape)
1012

1013
        power_spectrum = pindex.bincount(weights=fieldabs)
1014
1015

        # Divide out the degeneracy factor
Ultimanet's avatar
Ultimanet committed
1016
1017
        power_spectrum /= rho
        return power_spectrum
Marco Selig's avatar
Marco Selig committed
1018

Ultima's avatar
Ultima committed
1019
1020
    def get_plot(self,x,title="",vmin=None,vmax=None,power=None,unit="",
                 norm=None,cmap=None,cbar=True,other=None,legend=False,mono=True,**kwargs):
Marco Selig's avatar
Marco Selig committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            o