critical_power_energy.py 4.82 KB
Newer Older
1
2
3
4
from ...energies.energy import Energy
from ...operators.smoothness_operator import SmoothnessOperator
from . import CriticalPowerCurvature
from ...energies.memoization import memo
5

6
7
from ...sugar import generate_posterior_sample
from ... import Field, exp
8

9

10
class CriticalPowerEnergy(Energy):
Jakob Knollmueller's avatar
Jakob Knollmueller committed
11
    """The Energy of the power spectrum according to the critical filter.
12

13
14
15
16
    It describes the energy of the logarithmic amplitudes of the power spectrum
    of a Gaussian random field under reconstruction uncertainty with smoothness
    and inverse gamma prior. It is used to infer the correlation structure of a
    correlated signal.
17
18
19

    Parameters
    ----------
Jakob Knollmueller's avatar
Jakob Knollmueller committed
20
21
22
23
24
25
26
27
28
    position : Field,
        The current position of this energy.
    m : Field,
        The map whichs power spectrum has to be inferred
    D : EndomorphicOperator,
        The curvature of the Gaussian encoding the posterior covariance.
        If not specified, the map is assumed to be no reconstruction.
        default : None
    alpha : float
29
30
        The spectral prior of the inverse gamma distribution. 1.0 corresponds
        to non-informative.
Jakob Knollmueller's avatar
Jakob Knollmueller committed
31
32
        default : 1.0
    q : float
33
34
35
36
37
        The cutoff parameter of the inverse gamma distribution. 0.0 corresponds
        to non-informative.
        default : 0.0
    smoothness_prior : float
        Controls the strength of the smoothness prior
Jakob Knollmueller's avatar
Jakob Knollmueller committed
38
39
40
41
        default : 0.0
    logarithmic : boolean
        Whether smoothness acts on linear or logarithmic scale.
    samples : integer
42
43
        Number of samples used for the estimation of the uncertainty
        corrections.
Jakob Knollmueller's avatar
Jakob Knollmueller committed
44
45
46
47
48
        default : 3
    w : Field
        The contribution from the map with or without uncertainty. It is used
        to pass on the result of the costly sampling during the minimization.
        default : None
49
50
51
    inverter : ConjugateGradient
        The inversion strategy to invert the curvature and to generate samples.
        default : None
52
53
    """

54
55
    # ---Overwritten properties and methods---

56
57
58
    def __init__(self, position, m, D=None, alpha=1.0, q=0.,
                 smoothness_prior=0., logarithmic=True, samples=3, w=None):
        super(CriticalPowerEnergy, self).__init__(position=position)
59
        self.m = m
60
61
        self.D = D
        self.samples = samples
62
63
        self.alpha = Field(self.position.domain, val=alpha)
        self.q = Field(self.position.domain, val=q)
64
        self.T = SmoothnessOperator(domain=self.position.domain[0],
65
                                    strength=smoothness_prior,
Jakob Knollmueller's avatar
Jakob Knollmueller committed
66
                                    logarithmic=logarithmic)
67
        self.rho = self.position.domain[0].rho
68
        self._w = w if w is not None else None
69

70
71
    # ---Mandatory properties and methods---

72
    def at(self, position):
73
74
        return self.__class__(position, self.m, D=self.D, alpha=self.alpha,
                              q=self.q, smoothness_prior=self.smoothness_prior,
75
                              logarithmic=self.logarithmic,
76
                              w=self.w, samples=self.samples)
77
78
79

    @property
    def value(self):
80
        energy = self._theta.sum()
81
82
        energy += self.position.vdot(self._rho_prime, bare=True)
        energy += 0.5 * self.position.vdot(self._Tt)
83
84
85
86
        return energy.real

    @property
    def gradient(self):
87
        gradient = -self._theta.weight(-1)
88
        gradient += (self._rho_prime).weight(-1)
89
        gradient += self._Tt
90
        gradient.val = gradient.val.real
91
92
93
94
        return gradient

    @property
    def curvature(self):
95
96
        curvature = CriticalPowerCurvature(theta=self._theta.weight(-1),
                                           T=self.T)
97
98
        return curvature

99
100
101
102
103
104
105
106
107
108
    # ---Added properties and methods---

    @property
    def logarithmic(self):
        return self.T.logarithmic

    @property
    def smoothness_prior(self):
        return self.T.strength

109
110
111
112
113
114
115
116
117
    @property
    def w(self):
        if self._w is None:
            w = Field(domain=self.position.domain, val=0., dtype=self.m.dtype)
            if self.D is not None:
                for i in range(self.samples):
                    posterior_sample = generate_posterior_sample(
                                                            self.m, self.D)
                    projected_sample = posterior_sample.power_analyze(
Martin Reinecke's avatar
Martin Reinecke committed
118
                     binbounds=self.position.domain[0].binbounds)
119
120
121
122
                    w += (projected_sample) * self.rho
                w /= float(self.samples)
            else:
                w = self.m.power_analyze(
Martin Reinecke's avatar
Martin Reinecke committed
123
                     binbounds=self.position.domain[0].binbounds)
124
125
126
                w *= self.rho
            self._w = w
        return self._w
127

128
129
130
    @property
    @memo
    def _theta(self):
131
        return exp(-self.position) * (self.q + self.w / 2.)
132
133
134
135
136
137
138
139
140
141

    @property
    @memo
    def _rho_prime(self):
        return self.alpha - 1. + self.rho / 2.

    @property
    @memo
    def _Tt(self):
        return self.T(self.position)