hp_space.py 6.38 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division

36
37
import pickle

csongor's avatar
csongor committed
38
import numpy as np
39

40
import d2o
41
from keepers import Versionable
42

43
from nifty.spaces.space import Space
44
from nifty.config import nifty_configuration as gc, \
csongor's avatar
csongor committed
45
46
47
48
                         dependency_injector as gdi

hp = gdi.get('healpy')

49

50
class HPSpace(Versionable, Space):
csongor's avatar
csongor committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    """
        ..        __
        ..      /  /
        ..     /  /___    ______
        ..    /   _   | /   _   |
        ..   /  / /  / /  /_/  /
        ..  /__/ /__/ /   ____/  space class
        ..           /__/

        NIFTY subclass for HEALPix discretizations of the two-sphere [#]_.

        Parameters
        ----------
        nside : int
            Resolution parameter for the HEALPix discretization, resulting in
            ``12*nside**2`` pixels.

        See Also
        --------
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only powers of two are allowed for `nside`.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            Array containing the number `nside`.
        dtype : numpy.dtype
            Data type of the field values, which is always numpy.float64.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array with one element containing the pixel size.
    """

100
101
    _serializable = ('nside', 'dtype')

102
103
    # ---Overwritten properties and methods---

104
    def __init__(self, nside=2, dtype=np.dtype('float')):
csongor's avatar
csongor committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        """
            Sets the attributes for a hp_space class instance.

            Parameters
            ----------
            nside : int
                Resolution parameter for the HEALPix discretization, resulting
                in ``12*nside**2`` pixels.

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the healpy module is not available.
            ValueError
                If input `nside` is invaild.

        """
        # check imports
        if not gc['use_healpy']:
128
            raise ImportError("healpy not available or not loaded.")
csongor's avatar
csongor committed
129

130
        super(HPSpace, self).__init__(dtype)
csongor's avatar
csongor committed
131

132
        self._nside = self._parse_nside(nside)
csongor's avatar
csongor committed
133

134
135
136
137
138
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return False
csongor's avatar
csongor committed
139
140
141

    @property
    def shape(self):
142
        return (np.int(12 * self.nside ** 2),)
csongor's avatar
csongor committed
143
144

    @property
Jait Dixit's avatar
Jait Dixit committed
145
    def dim(self):
146
        return np.int(12 * self.nside ** 2)
csongor's avatar
csongor committed
147

148
149
150
    @property
    def total_volume(self):
        return 4 * np.pi
151

152
153
154
155
    def copy(self):
        return self.__class__(nside=self.nside,
                              dtype=self.dtype)

156
    def weight(self, x, power=1, axes=None, inplace=False):
157
        weight = ((4*np.pi) / (12 * self.nside**2)) ** power
158
159
160
161
162
163
164
165

        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x * weight

        return result_x
166

167
    def get_distance_array(self, distribution_strategy):
theos's avatar
theos committed
168
169
170
171
172
173
174
175
176
177
178
        """
        Calculates distance from center to all the points on the sphere

        Parameters
        ----------
        distribution_strategy: Result d2o's distribution strategy

        Returns
        -------
        dists: distributed_data_object
        """
179
        dists = d2o.arange(
180
            start=0, stop=self.shape[0],
theos's avatar
theos committed
181
182
183
            distribution_strategy=distribution_strategy
        )

184
185
186
        # translate distances to 3D unit vectors on a sphere,
        # extract the first entry (simulates the scalar product with (1,0,0))
        # and apply arccos
theos's avatar
theos committed
187
        dists = dists.apply_scalar_function(
188
189
                    lambda z: np.arccos(hp.pix2vec(self.nside, z)[0]),
                    dtype=np.float)
theos's avatar
theos committed
190
191
192

        return dists

193
    def get_fft_smoothing_kernel_function(self, sigma):
Jait Dixit's avatar
Jait Dixit committed
194
        if sigma is None:
195
            sigma = np.sqrt(2) * np.pi
Jait Dixit's avatar
Jait Dixit committed
196
197

        return lambda x: np.exp((-0.5 * x**2) / sigma**2)
theos's avatar
theos committed
198

199
200
201
202
203
204
205
206
207
    # ---Added properties and methods---

    @property
    def nside(self):
        return self._nside

    def _parse_nside(self, nside):
        nside = int(nside)
        if nside & (nside - 1) != 0 or nside < 2:
208
209
            raise ValueError(
                "nside must be positive and a multiple of 2.")
210
        return nside
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['serialized'] = [
            pickle.dumps(getattr(self, item)) for item in self._serializable
        ]
        return None

    @classmethod
    def _from_hdf5(cls, hdf5_group, loopback_get):
        result = cls(
            *[pickle.loads(item) for item in hdf5_group['serialized']])
        return result