lm_space.py 5.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
22
from __future__ import division

import numpy as np

23
from nifty.spaces.space import Space
theos's avatar
theos committed
24

Jait Dixit's avatar
Jait Dixit committed
25
26
from d2o import arange

csongor's avatar
csongor committed
27

Theo Steininger's avatar
Theo Steininger committed
28
class LMSpace(Space):
csongor's avatar
csongor committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.

46
47
48
49
50

        Notes:
        ------
        This implementation implicitly sets the mmax parameter to lmax.

csongor's avatar
csongor committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
    """

Martin Reinecke's avatar
Martin Reinecke committed
67
    def __init__(self, lmax):
csongor's avatar
csongor committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.

            Returns
            -------
            None.

        """

Martin Reinecke's avatar
Martin Reinecke committed
83
        super(LMSpace, self).__init__()
csongor's avatar
csongor committed
84
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
85

86
87
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
88
89
90
91
92
93
        hermitian_part = x.copy_empty()
        anti_hermitian_part = x.copy_empty()
        hermitian_part[:] = x.real
        anti_hermitian_part[:] = x.imag
        return (hermitian_part, anti_hermitian_part)

Theo Steininger's avatar
Theo Steininger committed
94
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
95
96
97
98

    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
99
100

    @property
101
102
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
103
104

    @property
105
106
    def dim(self):
        l = self.lmax
107
        # the LMSpace consists of the full triangle (including -m's!),
theos's avatar
theos committed
108
109
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
110
111
112
        # dim = np.int((l+1)**2 - (l-m)*(l-m+1.))
        # We fix l == m
        return np.int((l+1)**2)
csongor's avatar
csongor committed
113

114
115
116
    @property
    def total_volume(self):
        # the individual pixels have a fixed volume of 1.
Martin Reinecke's avatar
Martin Reinecke committed
117
        return np.float64(self.dim)
csongor's avatar
csongor committed
118

119
    def copy(self):
Martin Reinecke's avatar
Martin Reinecke committed
120
        return self.__class__(lmax=self.lmax)
csongor's avatar
csongor committed
121

122
123
124
    def weight(self, x, power=1, axes=None, inplace=False):
        if inplace:
            return x
csongor's avatar
csongor committed
125
        else:
126
            return x.copy()
csongor's avatar
csongor committed
127

128
129
130
131
132
    def get_distance_array(self, distribution_strategy):
        dists = arange(start=0, stop=self.shape[0],
                       distribution_strategy=distribution_strategy)

        dists = dists.apply_scalar_function(
133
            lambda x: self._distance_array_helper(x, self.lmax),
Martin Reinecke's avatar
Martin Reinecke committed
134
            dtype=np.float64)
135
136
137

        return dists

138
139
140
141
142
143
144
145
    @staticmethod
    def _distance_array_helper(index_array, lmax):
        u = 2*lmax + 1
        index_half = (index_array+np.minimum(lmax, index_array)+1)//2
        m = (np.ceil((u - np.sqrt(u*u - 8*(index_half - lmax)))/2)).astype(int)
        res = (index_half - m*(u - m)//2).astype(np.float64)
        return res

146
    def get_fft_smoothing_kernel_function(self, sigma):
147
148
        return lambda x: np.exp(-0.5 * x * (x + 1) * sigma**2)

csongor's avatar
csongor committed
149
150
151
152
153
154
155
156
    # ---Added properties and methods---

    @property
    def lmax(self):
        return self._lmax

    @property
    def mmax(self):
157
        return self._lmax
csongor's avatar
csongor committed
158
159
160

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
161
162
        if lmax < 0:
            raise ValueError("lmax must be >=0.")
csongor's avatar
csongor committed
163
        return lmax
Jait Dixit's avatar
Jait Dixit committed
164
165
166
167
168
169
170
171

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['lmax'] = self.lmax
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
172
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
173
174
175
176
        result = cls(
            lmax=hdf5_group['lmax'][()],
            )
        return result