test_jacobian.py 5.94 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest

import nifty5 as ift

23
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
24
25
26
27
28
29
30

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
Philipp Arras's avatar
Philipp Arras committed
31
32
33
34
35
_h_RG_spaces = [
    ift.RGSpace(7, distances=0.2, harmonic=True),
    ift.RGSpace((12, 46), distances=(.2, .3), harmonic=True)
]
_h_spaces = _h_RG_spaces + [ift.LMSpace(17)]
Philipp Arras's avatar
Philipp Arras committed
36
37
38
39
space1 = space
seed = list2fixture([4, 78, 23])


Philipp Arras's avatar
Philipp Arras committed
40
def testBasics(space, seed):
Philipp Arras's avatar
Philipp Arras committed
41
42
43
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
Philipp Arras's avatar
Philipp Arras committed
44
    var = ift.Linearization.make_var(s)
Philipp Arras's avatar
Philipp Arras committed
45
    model = ift.ScalingOperator(6., var.target)
Martin Reinecke's avatar
Martin Reinecke committed
46
    ift.extra.check_jacobian_consistency(model, var.val)
Philipp Arras's avatar
Philipp Arras committed
47
48
49
50
51
52
53


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
Philipp Arras's avatar
Philipp Arras committed
54
    np.random.seed(seed)
Philipp Arras's avatar
Philipp Arras committed
55
    dom = ift.MultiDomain.union((dom1, dom2))
56
57
    select_s1 = ift.ducktape(None, dom1, "s1")
    select_s2 = ift.ducktape(None, dom2, "s2")
Philipp Arras's avatar
Philipp Arras committed
58
59
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
60
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
61
62
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
63
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
64
65
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
66
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
67
68
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
69
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
70
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
71
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
72
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
73
74
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
Martin Reinecke's avatar
Martin Reinecke committed
75
    ift.extra.check_jacobian_consistency(model, pos['s2'], ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
76
    model = select_s1**2
77
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
78
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
79
    model = select_s1.clip(-1, 1)
80
    pos = ift.from_random("normal", dom1)
81
82
83
84
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
    f = ift.from_random("normal", space)
    model = select_s1.clip(f-0.1, f+1.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
85
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
86
87
88
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
89
        ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
90
91
92
93
94
95
96


def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups    
Philipp Arras committed
97
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
98
    # FIXME All those cdfs and ppfs are not very accurate
99
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-3, ntries=20)
100
    model = ift.StudentTOperator(space, alpha, q)
101
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-3, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
102

103

Philipp Frank's avatar
Philipp Frank committed
104
@pmp('target', [
Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
    ift.RGSpace(64, distances=.789, harmonic=True),
    ift.RGSpace([32, 32], distances=.789, harmonic=True),
    ift.RGSpace([32, 32, 8], distances=.789, harmonic=True)
108
])
Martin Reinecke's avatar
Martin Reinecke committed
109
110
111
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
Philipp Frank's avatar
Philipp Frank committed
112
113
114
115
116
117
118
119
120
121
122
def testDynamicModel(target, causal, minimum_phase, seed):
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
126
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
127
    if len(target.shape) > 1:
128
        dct = {
Philipp Frank's avatar
Philipp Frank committed
129
            'target': target,
130
131
132
133
134
135
136
137
138
139
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
140
141
142
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
143
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
144
145
146
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
147
        ift.extra.check_jacobian_consistency(
148
            model, pos, tol=1e-5, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165


@pmp('h_space', _h_spaces)
@pmp('specialbinbounds', [True, False])
@pmp('logarithmic', [True, False])
@pmp('nbin', [3, None])
def testNormalization(h_space, specialbinbounds, logarithmic, nbin):
    if not specialbinbounds and (not logarithmic or nbin is not None):
        return
    if specialbinbounds:
        binbounds = ift.PowerSpace.useful_binbounds(h_space, logarithmic, nbin)
    else:
        binbounds = None
    dom = ift.PowerSpace(h_space, binbounds)
    op = ift.library.correlated_fields._Normalization(dom)
    pos = 0.1*ift.from_random('normal', op.domain)
    ift.extra.check_jacobian_consistency(op, pos)