gl_space.py 6.46 KB
Newer Older
csongor's avatar
csongor committed
1
2
from __future__ import division

Jait Dixit's avatar
Jait Dixit committed
3
import itertools
csongor's avatar
csongor committed
4
5
import numpy as np

6
7
import d2o
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
8

9
from nifty.spaces.space import Space
10
from nifty.config import nifty_configuration as gc,\
11
                         dependency_injector as gdi
csongor's avatar
csongor committed
12
13
14
15
16

gl = gdi.get('libsharp_wrapper_gl')

GL_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']

17

Theo Steininger's avatar
Theo Steininger committed
18
class GLSpace(Space):
csongor's avatar
csongor committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
        `dtype` has to be either numpy.float64 or numpy.float32.

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """

71
72
    # ---Overwritten properties and methods---

73
    def __init__(self, nlat=2, nlon=None, dtype=None):
csongor's avatar
csongor committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
        # check imports
        if not gc['use_libsharp']:
100
101
            raise ImportError(
                "libsharp_wrapper_gl not available or not loaded.")
102
103

        super(GLSpace, self).__init__(dtype)
csongor's avatar
csongor committed
104

105
106
        self._nlat = self._parse_nlat(nlat)
        self._nlon = self._parse_nlon(nlon)
csongor's avatar
csongor committed
107

108
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
109

110
111
112
    @property
    def harmonic(self):
        return False
csongor's avatar
csongor committed
113
114
115

    @property
    def shape(self):
116
        return (np.int((self.nlat * self.nlon)),)
csongor's avatar
csongor committed
117

118
    @property
119
    def dim(self):
120
        return np.int((self.nlat * self.nlon))
121
122
123
124

    @property
    def total_volume(self):
        return 4 * np.pi
125

126
127
128
129
130
    def copy(self):
        return self.__class__(nlat=self.nlat,
                              nlon=self.nlon,
                              dtype=self.dtype)

Jait Dixit's avatar
Jait Dixit committed
131
    def weight(self, x, power=1, axes=None, inplace=False):
132
133
        nlon = self.nlon
        nlat = self.nlat
134
135

        weight = np.array(list(itertools.chain.from_iterable(
136
137
            itertools.repeat(x ** power, nlon)
            for x in gl.vol(nlat))))
Jait Dixit's avatar
Jait Dixit committed
138
139
140

        if axes is not None:
            # reshape the weight array to match the input shape
141
            new_shape = np.ones(len(x.shape), dtype=np.int)
142
143
            # we know len(axes) is always 1
            new_shape[axes[0]] = len(weight)
Jait Dixit's avatar
Jait Dixit committed
144
145
146
147
148
            weight = weight.reshape(new_shape)

        if inplace:
            x *= weight
            result_x = x
csongor's avatar
csongor committed
149
        else:
Jait Dixit's avatar
Jait Dixit committed
150
            result_x = x * weight
csongor's avatar
csongor committed
151

Jait Dixit's avatar
Jait Dixit committed
152
        return result_x
153

154
    def get_distance_array(self, distribution_strategy):
155
156
        dists = d2o.arange(start=0, stop=self.shape[0],
                           distribution_strategy=distribution_strategy)
157

158
        dists = dists.apply_scalar_function(
159
            lambda x: self._distance_array_helper(divmod(x, self.nlon)),
160
            dtype=np.float)
161
162
163

        return dists

theos's avatar
theos committed
164
    def _distance_array_helper(self, qr_tuple):
165
166
        lat = qr_tuple[0]*(np.pi/(self.nlat-1))
        lon = qr_tuple[1]*(2*np.pi/(self.nlon-1))
Jait Dixit's avatar
Jait Dixit committed
167
168
169
        numerator = np.sqrt(np.sin(lon)**2 +
                            (np.sin(lat) * np.cos(lon))**2)
        denominator = np.cos(lat) * np.cos(lon)
170

theos's avatar
theos committed
171
        return np.arctan(numerator / denominator)
172

173
    def get_fft_smoothing_kernel_function(self, sigma):
Jait Dixit's avatar
Jait Dixit committed
174
        if sigma is None:
175
            sigma = np.sqrt(2) * np.pi
Jait Dixit's avatar
Jait Dixit committed
176
177

        return lambda x: np.exp((-0.5 * x**2) / sigma**2)
178

179
180
181
182
183
184
185
186
187
188
189
190
191
    # ---Added properties and methods---

    @property
    def nlat(self):
        return self._nlat

    @property
    def nlon(self):
        return self._nlon

    def _parse_nlat(self, nlat):
        nlat = int(nlat)
        if nlat < 2:
192
            raise ValueError("nlat must be greater than 2.")
193
        elif nlat % 2 != 0:
194
            raise ValueError("nlat must be a multiple of 2.")
195
196
197
198
199
200
201
202
        return nlat

    def _parse_nlon(self, nlon):
        if nlon is None:
            nlon = 2 * self.nlat - 1
        else:
            nlon = int(nlon)
            if nlon != 2 * self.nlat - 1:
203
204
                self.logger.warn("nlon was set to an unrecommended value: "
                                 "nlon <> 2*nlat-1.")
205
        return nlon
206
207
208
209

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
210
211
        hdf5_group['nlat'] = self.nlat
        hdf5_group['nlon'] = self.nlon
212
        hdf5_group.attrs['dtype'] = self.dtype.name
Jait Dixit's avatar
Jait Dixit committed
213

214
215
216
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
217
    def _from_hdf5(cls, hdf5_group, repository):
218
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
219
220
            nlat=hdf5_group['nlat'][()],
            nlon=hdf5_group['nlon'][()],
221
            dtype=np.dtype(hdf5_group.attrs['dtype'])
Jait Dixit's avatar
Jait Dixit committed
222
223
            )

224
        return result