rg_space.py 12.2 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Ultimanet's avatar
Ultimanet committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

Marco Selig's avatar
Marco Selig committed
40

Theo Steininger's avatar
Theo Steininger committed
41
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
42
43
44
45
46
47
48
49
50
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
51
52
53
54
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
55
56
57
58
        zerocenter : {bool, numpy.ndarray} *optional*
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
            (default: False).
Theo Steininger's avatar
Theo Steininger committed
59
60
61
62
63
64
65
66
67
68
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
69
            (default: False).
Marco Selig's avatar
Marco Selig committed
70
71
72

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
73
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
74
75
76
77
78
            Whether or not the grid represents a position or harmonic space.
        zerocenter : tuple of bool
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
        distances : tuple of floats
79
80
81
82
83
84
85
86
87
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
88

Marco Selig's avatar
Marco Selig committed
89
90
    """

91
92
    # ---Overwritten properties and methods---

93
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
94
                 harmonic=False):
95
96
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
97
        super(RGSpace, self).__init__()
98

99
100
101
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# This code is unused but may be useful to keep around if it is ever needed
# again in the future ...

#    def hermitian_fixed_points(self):
#        dimensions = len(self.shape)
#        mid_index = np.array(self.shape)//2
#        ndlist = [1]*dimensions
#        for k in range(dimensions):
#            if self.shape[k] % 2 == 0:
#                ndlist[k] = 2
#        ndlist = tuple(ndlist)
#        fixed_points = []
#        for index in np.ndindex(ndlist):
#            for k in range(dimensions):
#                if self.shape[k] % 2 != 0 and self.zerocenter[k]:
#                    index = list(index)
#                    index[k] = 1
#                    index = tuple(index)
#            fixed_points += [tuple(index * mid_index)]
#        return fixed_points

124
    def hermitianize_inverter(self, x, axes):
125
        # calculate the number of dimensions the input array has
Martin Reinecke's avatar
Martin Reinecke committed
126
        dimensions = len(x.shape)
127
128
129
130
131
132
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        # flip in the desired directions
Martin Reinecke's avatar
Martin Reinecke committed
133
134
        for k in range(len(axes)):
            i = axes[k]
135
136
            slice_picker = slice_primitive[:]
            slice_inverter = slice_primitive[:]
Martin Reinecke's avatar
Martin Reinecke committed
137
            if (not self.zerocenter[k]) or self.shape[k] % 2 == 0:
Martin Reinecke's avatar
Martin Reinecke committed
138
                slice_picker[i] = slice(1, None, None)
139
140
                slice_inverter[i] = slice(None, 0, -1)
            else:
Martin Reinecke's avatar
Martin Reinecke committed
141
                slice_picker[i] = slice(None)
142
                slice_inverter[i] = slice(None, None, -1)
Martin Reinecke's avatar
Martin Reinecke committed
143
            slice_picker = tuple(slice_picker)
144
145
146
            slice_inverter = tuple(slice_inverter)

            try:
Martin Reinecke's avatar
Martin Reinecke committed
147
148
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
149
150
151
152
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

153
154
    # ---Mandatory properties and methods---

155
156
157
158
    def __repr__(self):
        return ("RGSpace(shape=%r, zerocenter=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.zerocenter, self.distances, self.harmonic))

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
179
                              harmonic=self.harmonic)
180
181

    def weight(self, x, power=1, axes=None, inplace=False):
182
        weight = reduce(lambda x, y: x*y, self.distances) ** np.float(power)
183
184
185
186
187
188
189
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

190
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
191
192
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
theos's avatar
theos committed
193

Theo Steininger's avatar
Theo Steininger committed
194
195
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
196
197
198
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.
theos's avatar
theos committed
199

Theo Steininger's avatar
Theo Steininger committed
200
201
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
202
        distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
203
204
            A d2o containing the distances.

theos's avatar
theos committed
205
        """
Theo Steininger's avatar
Theo Steininger committed
206

theos's avatar
theos committed
207
208
209
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
210
                        global_shape=shape, dtype=np.float64,
theos's avatar
theos committed
211
212
213
214
215
216
217
218
219
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
220
221
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

237
238
        dists = (cords[0] - shape[0]//2)*dk[0]
        dists *= dists
theos's avatar
theos committed
239
        # apply zerocenterQ shift
240
241
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
theos's avatar
theos committed
242
243
244
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
245
246
            temp = (cords[ii] - shape[ii] // 2) * dk[ii]
            temp *= temp
247
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
248
                temp = np.fft.ifftshift(temp)
theos's avatar
theos committed
249
250
251
252
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

Martin Reinecke's avatar
Martin Reinecke committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    def get_unique_distances(self):
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
            tmp = self.get_distance_array('not').unique()  # expensive!
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

    def get_natural_binbounds(self):
        tmp = self.get_unique_distances()
        return 0.5*(tmp[:-1]+tmp[1:])

283
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
284
        return lambda x: np.exp(-2. * np.pi*np.pi * x*x * sigma*sigma)
theos's avatar
theos committed
285

286
287
288
289
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
290
291
292
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
293
        """
Theo Steininger's avatar
Theo Steininger committed
294

295
296
297
298
        return self._distances

    @property
    def zerocenter(self):
299
        """Returns True if grid points lie symmetrically around zero.
Theo Steininger's avatar
Theo Steininger committed
300

301
302
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
303
304
305
306
307
        bool
            True if the grid points are centered around the 0 grid point. This
            option is most common for harmonic spaces (where both conventions
            are used) but may be used for position spaces, too.

308
        """
Theo Steininger's avatar
Theo Steininger committed
309

310
311
312
313
314
315
316
317
318
319
320
321
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
322
                temp = np.ones_like(self.shape, dtype=np.float64)
323
            else:
Martin Reinecke's avatar
Martin Reinecke committed
324
                temp = 1 / np.array(self.shape, dtype=np.float64)
325
        else:
Martin Reinecke's avatar
Martin Reinecke committed
326
            temp = np.empty(len(self.shape), dtype=np.float64)
327
328
329
330
331
332
333
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
334
335
336
337

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
338
339
340
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
341
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
342

343
344
345
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
346
    def _from_hdf5(cls, hdf5_group, repository):
347
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
348
349
350
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
351
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
352
            )
353
        return result