lm_space.py 5.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
22
from __future__ import division

import numpy as np

23
from nifty.spaces.space import Space
theos's avatar
theos committed
24

Jait Dixit's avatar
Jait Dixit committed
25
26
from d2o import arange

csongor's avatar
csongor committed
27

Theo Steininger's avatar
Theo Steininger committed
28
class LMSpace(Space):
csongor's avatar
csongor committed
29
30
31
32
33
34
35
36
37
38
39
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

40
        Attributes
csongor's avatar
csongor committed
41
42
        ----------
        lmax : int
43
44
45
46
47
            The maximal :math:`l` value of any spherical harmonics
            :math:`Y_{lm}` that is represented in this Space.
        mmax : int
            The maximal :math:`m` value of any spherical harmonic
            :math:`Y_{lm}` that is represented in this Space.
48
49
50
51
52
53
54
55
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
csongor's avatar
csongor committed
56
57
58
59
60
61
62

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

Theo Steininger's avatar
Theo Steininger committed
63
64
65
66
67
        Raises
        ------
        ValueError
            If given lmax is negative.

68
69
        Notes
        -----
Theo Steininger's avatar
Theo Steininger committed
70
            This implementation implicitly sets the mmax parameter to lmax.
71

csongor's avatar
csongor committed
72
73
74
75
76
77
78
79
80
81
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
    """

Martin Reinecke's avatar
Martin Reinecke committed
82
83
    def __init__(self, lmax):
        super(LMSpace, self).__init__()
csongor's avatar
csongor committed
84
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
85

86
87
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
88
89
90
91
92
93
        hermitian_part = x.copy_empty()
        anti_hermitian_part = x.copy_empty()
        hermitian_part[:] = x.real
        anti_hermitian_part[:] = x.imag
        return (hermitian_part, anti_hermitian_part)

Theo Steininger's avatar
Theo Steininger committed
94
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
95
96
97
98

    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
99
100

    @property
101
102
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
103
104

    @property
105
106
    def dim(self):
        l = self.lmax
107
        # the LMSpace consists of the full triangle (including -m's!),
theos's avatar
theos committed
108
109
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
110
111
112
        # dim = np.int((l+1)**2 - (l-m)*(l-m+1.))
        # We fix l == m
        return np.int((l+1)**2)
csongor's avatar
csongor committed
113

114
115
116
    @property
    def total_volume(self):
        # the individual pixels have a fixed volume of 1.
Martin Reinecke's avatar
Martin Reinecke committed
117
        return np.float64(self.dim)
csongor's avatar
csongor committed
118

119
    def copy(self):
Martin Reinecke's avatar
Martin Reinecke committed
120
        return self.__class__(lmax=self.lmax)
csongor's avatar
csongor committed
121

122
123
124
    def weight(self, x, power=1, axes=None, inplace=False):
        if inplace:
            return x
csongor's avatar
csongor committed
125
        else:
126
            return x.copy()
csongor's avatar
csongor committed
127

128
129
130
131
132
    def get_distance_array(self, distribution_strategy):
        dists = arange(start=0, stop=self.shape[0],
                       distribution_strategy=distribution_strategy)

        dists = dists.apply_scalar_function(
133
            lambda x: self._distance_array_helper(x, self.lmax),
Martin Reinecke's avatar
Martin Reinecke committed
134
            dtype=np.float64)
135
136
137

        return dists

138
139
140
141
142
143
144
145
    @staticmethod
    def _distance_array_helper(index_array, lmax):
        u = 2*lmax + 1
        index_half = (index_array+np.minimum(lmax, index_array)+1)//2
        m = (np.ceil((u - np.sqrt(u*u - 8*(index_half - lmax)))/2)).astype(int)
        res = (index_half - m*(u - m)//2).astype(np.float64)
        return res

146
    def get_fft_smoothing_kernel_function(self, sigma):
147
        # FIXME why x(x+1) ? add reference to paper!
148
149
        return lambda x: np.exp(-0.5 * x * (x + 1) * sigma**2)

csongor's avatar
csongor committed
150
151
152
153
    # ---Added properties and methods---

    @property
    def lmax(self):
Theo Steininger's avatar
Theo Steininger committed
154
155
        """ Returns the maximal :math:`l` value of any spherical harmonics
        :math:`Y_{lm}` that is represented in this Space.
156
        """
csongor's avatar
csongor committed
157
158
159
160
        return self._lmax

    @property
    def mmax(self):
Theo Steininger's avatar
Theo Steininger committed
161
162
163
164
165
        """ Returns the maximal :math:`m` value of any spherical harmonic
        :math:`Y_{lm}` that is represented in this Space. As :math:`m` goes
        from :math:`-l` to :math:`l` for every :math:`l` this just returns the
        same as lmax.

166
167
        See Also
        --------
Theo Steininger's avatar
Theo Steininger committed
168
169
170
        lmax : Returns the maximal :math:`l`-value of the spherical harmonics
            being used.

171
        """
Theo Steininger's avatar
Theo Steininger committed
172

173
        return self._lmax
csongor's avatar
csongor committed
174
175
176

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
177
178
        if lmax < 0:
            raise ValueError("lmax must be >=0.")
csongor's avatar
csongor committed
179
        return lmax
Jait Dixit's avatar
Jait Dixit committed
180
181
182
183
184
185
186
187

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['lmax'] = self.lmax
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
188
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
189
190
191
192
        result = cls(
            lmax=hdf5_group['lmax'][()],
            )
        return result