operator.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
Martin Reinecke committed
20
from ..utilities import NiftyMeta, indent
Martin Reinecke's avatar
Martin Reinecke committed
21
22


Martin Reinecke's avatar
Martin Reinecke committed
23
class Operator(metaclass=NiftyMeta):
Philipp Arras's avatar
Philipp Arras committed
24
    """Transforms values defined on one domain into values defined on another
Martin Reinecke's avatar
Martin Reinecke committed
25
26
27
    domain, and can also provide the Jacobian.
    """

Martin Reinecke's avatar
Martin Reinecke committed
28
    @property
Martin Reinecke's avatar
Martin Reinecke committed
29
    def domain(self):
Philipp Arras's avatar
Docs    
Philipp Arras committed
30
        """The domain on which the Operator's input Field is defined.
Martin Reinecke's avatar
Martin Reinecke committed
31

Philipp Arras's avatar
Docs    
Philipp Arras committed
32
33
34
35
        Returns
        -------
        domain : DomainTuple or MultiDomain
        """
Martin Reinecke's avatar
Martin Reinecke committed
36
        return self._domain
Martin Reinecke's avatar
Martin Reinecke committed
37

Martin Reinecke's avatar
Martin Reinecke committed
38
    @property
Martin Reinecke's avatar
Martin Reinecke committed
39
    def target(self):
Philipp Arras's avatar
Docs    
Philipp Arras committed
40
41
42
43
44
45
        """The domain on which the Operator's output Field is defined.

        Returns
        -------
        target : DomainTuple or MultiDomain
        """
Martin Reinecke's avatar
Martin Reinecke committed
46
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
47

Martin Reinecke's avatar
misc    
Martin Reinecke committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    @property
    def val(self):
        """The numerical value associated with this object
        For "pure" operators this is `None`. For Field-like objects this
        is a `numpy.ndarray` or a dictionary of `numpy.ndarray`s mathcing the
        object's `target`.

        Returns
        -------
        None or numpy.ndarray or dictionary of np.ndarrays : the numerical value
        """
        return None

    @property
    def jac(self):
        """The Jacobian associated with this object
        For "pure" operators this is `None`. For Field-like objects this
        can be `None` (in which case the object is a constant), or it can be a
        `LinearOperator` with `domain` and `target` matching the object's.

        Returns
        -------
        None or LinearOperator : the Jacobian

        Notes
        -----
        if `value` is None, this must be `None` as well!
        """
        return None

    @property
    def want_metric(self):
        """Whether a metric should be computed for the full expression.
        This is `False` whenever `jac` is `None`. In other cases it signals
        that operators processing this object should compute the metric.

        Returns
        -------
        bool : whether the metric should be computed
        """
        return False

    @property
    def metric(self):
        """The metric associated with the object.
        This is `None`, except when all the following conditions hold:
        - `want_metric` is `True`
        - `target` is the scalar domain
        - the operator chain contained an operator which could compute the
          metric

        Returns
        -------
        None or LinearOperator : the metric
        """
        return None

Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
108
109
110
    @staticmethod
    def _check_domain_equality(dom_op, dom_field):
        if dom_op != dom_field:
            s = "The operator's and field's domains don't match."
            from ..domain_tuple import DomainTuple
            from ..multi_domain import MultiDomain
Sebastian Hutschenreuter's avatar
fix    
Sebastian Hutschenreuter committed
111
            if not isinstance(dom_op, (DomainTuple, MultiDomain,)):
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
115
                s += " Your operator's domain is neither a `DomainTuple`" \
                     " nor a `MultiDomain`."
            raise ValueError(s)

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
116
117
118
119
    def scale(self, factor):
        if factor == 1:
            return self
        from .scaling_operator import ScalingOperator
120
        return ScalingOperator(self.target, factor)(self)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
121
122
123
124
125

    def conjugate(self):
        from .simple_linear_operators import ConjugationOperator
        return ConjugationOperator(self.target)(self)

126
127
128
129
130
    def sum(self, spaces=None):
        from .contraction_operator import ContractionOperator
        return ContractionOperator(self.target, spaces)(self)

    def vdot(self, other):
Philipp Arras's avatar
Philipp Arras committed
131
132
133
134
135
136
137
138
139
140
        from ..field import Field
        from ..multi_field import MultiField
        from ..sugar import makeOp
        if isinstance(other, Operator):
            res = self.conjugate()*other
        elif isinstance(other, (Field, MultiField)):
            res = makeOp(other) @ self.conjugate()
        else:
            raise TypeError
        return res.sum()
141

Martin Reinecke's avatar
Martin Reinecke committed
142
143
144
145
146
    @property
    def real(self):
        from .simple_linear_operators import Realizer
        return Realizer(self.target)(self)

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
147
148
149
    def __neg__(self):
        return self.scale(-1)

Martin Reinecke's avatar
Martin Reinecke committed
150
151
152
    def __matmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
153
        return _OpChain.make((self, x))
Martin Reinecke's avatar
Martin Reinecke committed
154

155
156
157
158
159
    def __rmatmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
        return _OpChain.make((x, self))

Philipp Arras's avatar
Philipp Arras committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def partial_insert(self, x):
        from ..multi_domain import MultiDomain
        if not isinstance(x, Operator):
            raise TypeError
        if not isinstance(self.domain, MultiDomain):
            raise TypeError
        if not isinstance(x.target, MultiDomain):
            raise TypeError
        bigdom = MultiDomain.union([self.domain, x.target])
        k1, k2 = set(self.domain.keys()), set(x.target.keys())
        le, ri = k2 - k1, k1 - k2
        leop, riop = self, x
        if len(ri) > 0:
            riop = riop + self.identity_operator(
                MultiDomain.make({kk: bigdom[kk]
                                  for kk in ri}))
        if len(le) > 0:
            leop = leop + self.identity_operator(
                MultiDomain.make({kk: bigdom[kk]
                                  for kk in le}))
        return leop @ riop

    @staticmethod
    def identity_operator(dom):
        from .block_diagonal_operator import BlockDiagonalOperator
        from .scaling_operator import ScalingOperator
        idops = {kk: ScalingOperator(dd, 1.) for kk, dd in dom.items()}
        return BlockDiagonalOperator(dom, idops)

Martin Reinecke's avatar
Martin Reinecke committed
189
    def __mul__(self, x):
190
191
192
193
194
        if isinstance(x, Operator):
            return _OpProd(self, x)
        if np.isscalar(x):
            return self.scale(x)
        return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
195

196
197
198
    def __rmul__(self, x):
        return self.__mul__(x)

Philipp Arras's avatar
Philipp Arras committed
199
200
201
    def __add__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
202
        return _OpSum(self, x)
Philipp Arras's avatar
Philipp Arras committed
203

204
205
206
207
208
    def __sub__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
        return _OpSum(self, -x)

Martin Reinecke's avatar
Martin Reinecke committed
209
    def __pow__(self, power):
Martin Reinecke's avatar
misc    
Martin Reinecke committed
210
211
212
        from ..field import Field
        from ..multi_field import MultiField
        if not (np.isscalar(power) or isinstance(power, (Field, MultiField))):
Martin Reinecke's avatar
Martin Reinecke committed
213
            return NotImplemented
Martin Reinecke's avatar
misc    
Martin Reinecke committed
214
        return self.ptw("power", power)
Martin Reinecke's avatar
Martin Reinecke committed
215

Martin Reinecke's avatar
misc    
Martin Reinecke committed
216
217
218
219
    def clip(self, a_min=None, a_max=None):
        from ..field import Field
        from ..multi_field import MultiField
        if a_min is None and a_max is None:
Martin Reinecke's avatar
Martin Reinecke committed
220
            return self
Martin Reinecke's avatar
misc    
Martin Reinecke committed
221
222
223
224
225
        if not (a_min is None or np.isscalar(a_min) or isinstance(a_min, (Field, MultiField))):
            return NotImplemented
        if not (a_max is None or np.isscalar(a_max) or isinstance(a_max, (Field, MultiField))):
            return NotImplemented
        return self.ptw("clip", a_min, a_max)
Martin Reinecke's avatar
Martin Reinecke committed
226

Philipp Arras's avatar
Philipp Arras committed
227
    def apply(self, x):
228
        """Applies the operator to a Field or MultiField.
Philipp Arras's avatar
Docs    
Philipp Arras committed
229
230
231
232
233
234

        Parameters
        ----------
        x : Field or MultiField
            Input on which the operator shall act. Needs to be defined on
            :attr:`domain`.
235
        """
Martin Reinecke's avatar
Martin Reinecke committed
236
        raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
237

Philipp Arras's avatar
Philipp Arras committed
238
    def force(self, x):
Philipp Arras's avatar
Docs    
Philipp Arras committed
239
240
        """Extract subset of domain of x according to `self.domain` and apply
        operator."""
Philipp Arras's avatar
Fix    
Philipp Arras committed
241
        return self.apply(x.extract(self.domain))
Philipp Arras's avatar
Philipp Arras committed
242

243
    def _check_input(self, x):
Martin Reinecke's avatar
misc    
Martin Reinecke committed
244
245
        from ..field import Field
        from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
246
        from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
247
        from .scaling_operator import ScalingOperator
Philipp Arras's avatar
Philipp Arras committed
248
        if not isinstance(x, (Field, MultiField, Linearization)):
Philipp Arras's avatar
Philipp Arras committed
249
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
250
251
252
253
254
        if isinstance(x, Linearization):
            if not isinstance(x.jac, ScalingOperator):
                raise ValueError
            if x.jac._factor != 1:
                raise ValueError
Philipp Arras's avatar
Philipp Arras committed
255
        self._check_domain_equality(self._domain, x.domain)
256

Martin Reinecke's avatar
Martin Reinecke committed
257
    def __call__(self, x):
Philipp Arras's avatar
Philipp Arras committed
258
259
260
261
        from ..linearization import Linearization
        from ..field import Field
        from ..multi_field import MultiField
        if isinstance(x, Linearization):
Philipp Arras's avatar
Philipp Arras committed
262
            return self.apply(x.trivial_jac()).prepend_jac(x.jac)
Philipp Arras's avatar
Philipp Arras committed
263
        elif isinstance(x, (Field, MultiField)):
Philipp Arras's avatar
Philipp Arras committed
264
            return self.apply(x)
265
        return self @ x
Martin Reinecke's avatar
Martin Reinecke committed
266

Martin Reinecke's avatar
Martin Reinecke committed
267
268
    def ducktape(self, name):
        from .simple_linear_operators import ducktape
Philipp Arras's avatar
Philipp Arras committed
269
        return self @ ducktape(self, None, name)
Martin Reinecke's avatar
Martin Reinecke committed
270
271
272

    def ducktape_left(self, name):
        from .simple_linear_operators import ducktape
Philipp Arras's avatar
Philipp Arras committed
273
        return ducktape(None, self, name) @ self
Martin Reinecke's avatar
Martin Reinecke committed
274

Martin Reinecke's avatar
Martin Reinecke committed
275
276
277
    def __repr__(self):
        return self.__class__.__name__

278
    def simplify_for_constant_input(self, c_inp):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
279
        if c_inp is None:
280
            return None, self
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
281
282
283
284
285
286
287
        if c_inp.domain == self.domain:
            op = _ConstantOperator(self.domain, self(c_inp))
            return op(c_inp), op
        return self._simplify_for_constant_input_nontrivial(c_inp)

    def _simplify_for_constant_input_nontrivial(self, c_inp):
        return None, self
288

Martin Reinecke's avatar
misc    
Martin Reinecke committed
289
290
    def ptw(self, op, *args, **kwargs):
        return _OpChain.make((_FunctionApplier(self.target, op, *args, **kwargs), self))
Martin Reinecke's avatar
Martin Reinecke committed
291
292


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
class _ConstCollector(object):
    def __init__(self):
        self._const = None
        self._nc = set()

    def mult(self, const, fulldom):
        if const is None:
            self._nc |= set(fulldom)
        else:
            self._nc |= set(fulldom) - set(const)
            if self._const is None:
                from ..multi_field import MultiField
                self._const = MultiField.from_dict(
                    {key: const[key] for key in const if key not in self._nc})
            else:
                from ..multi_field import MultiField
                self._const = MultiField.from_dict(
                    {key: self._const[key]*const[key]
                     for key in const if key not in self._nc})

    def add(self, const, fulldom):
        if const is None:
            self._nc |= set(fulldom.keys())
        else:
            from ..multi_field import MultiField
            self._nc |= set(fulldom.keys()) - set(const.keys())
            if self._const is None:
                self._const = MultiField.from_dict(
Martin Reinecke's avatar
Martin Reinecke committed
321
322
                    {key: const[key]
                     for key in const.keys() if key not in self._nc})
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            else:
                self._const = self._const.unite(const)
                self._const = MultiField.from_dict(
                    {key: self._const[key]
                     for key in self._const if key not in self._nc})

    @property
    def constfield(self):
        return self._const


class _ConstantOperator(Operator):
    def __init__(self, dom, output):
        from ..sugar import makeDomain
        self._domain = makeDomain(dom)
        self._target = output.domain
        self._output = output

Philipp Arras's avatar
Philipp Arras committed
341
    def apply(self, x):
342
343
344
        from ..linearization import Linearization
        from .simple_linear_operators import NullOperator
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
345
346
        if isinstance(x, Linearization):
            return x.new(self._output, NullOperator(self._domain, self._target))
Philipp Arras's avatar
Philipp Arras committed
347
        return self._output
348
349
350

    def __repr__(self):
        return 'ConstantOperator <- {}'.format(self.domain.keys())
Philipp Arras's avatar
Philipp Arras committed
351
352


Martin Reinecke's avatar
Martin Reinecke committed
353
class _FunctionApplier(Operator):
Martin Reinecke's avatar
misc    
Martin Reinecke committed
354
    def __init__(self, domain, funcname, *args, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
355
        from ..sugar import makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
356
        self._domain = self._target = makeDomain(domain)
Martin Reinecke's avatar
Martin Reinecke committed
357
        self._funcname = funcname
Martin Reinecke's avatar
misc    
Martin Reinecke committed
358
359
        self._args = args
        self._kwargs = kwargs
Martin Reinecke's avatar
Martin Reinecke committed
360

Philipp Arras's avatar
Philipp Arras committed
361
    def apply(self, x):
362
        self._check_input(x)
Martin Reinecke's avatar
misc    
Martin Reinecke committed
363
        return x.ptw(self._funcname, *self._args, **self._kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
364
365


Martin Reinecke's avatar
Martin Reinecke committed
366
367
368
369
370
371
372
373
374
375
class _CombinedOperator(Operator):
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
        self._ops = tuple(ops)

    @classmethod
    def unpack(cls, ops, res):
        for op in ops:
            if isinstance(op, cls):
Martin Reinecke's avatar
Martin Reinecke committed
376
                res = cls.unpack(op._ops, res)
Martin Reinecke's avatar
Martin Reinecke committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
            else:
                res = res + [op]
        return res

    @classmethod
    def make(cls, ops):
        res = cls.unpack(ops, [])
        if len(res) == 1:
            return res[0]
        return cls(res, _callingfrommake=True)


class _OpChain(_CombinedOperator):
    def __init__(self, ops, _callingfrommake=False):
        super(_OpChain, self).__init__(ops, _callingfrommake)
Martin Reinecke's avatar
Martin Reinecke committed
392
393
        self._domain = self._ops[-1].domain
        self._target = self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
394
395
396
        for i in range(1, len(self._ops)):
            if self._ops[i-1].domain != self._ops[i].target:
                raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
397

Philipp Arras's avatar
Philipp Arras committed
398
    def apply(self, x):
399
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
400
401
402
403
        for op in reversed(self._ops):
            x = op(x)
        return x

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
404
    def _simplify_for_constant_input_nontrivial(self, c_inp):
405
406
407
408
409
410
411
412
413
        from ..multi_domain import MultiDomain
        if not isinstance(self._domain, MultiDomain):
            return None, self

        newop = None
        for op in reversed(self._ops):
            c_inp, t_op = op.simplify_for_constant_input(c_inp)
            newop = t_op if newop is None else op(newop)
        return c_inp, newop
Martin Reinecke's avatar
Martin Reinecke committed
414

Philipp Arras's avatar
Philipp Arras committed
415
416
417
418
419
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in self._ops)
        return "_OpChain:\n" + indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
420
421
422
423
424
425
426
427
428
class _OpProd(Operator):
    def __init__(self, op1, op2):
        from ..sugar import domain_union
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = op1.target
        if op1.target != op2.target:
            raise ValueError("target mismatch")
        self._op1 = op1
        self._op2 = op2
Martin Reinecke's avatar
Martin Reinecke committed
429

Philipp Arras's avatar
Philipp Arras committed
430
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
431
432
        from ..linearization import Linearization
        from ..sugar import makeOp
433
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
434
435
436
        lin = isinstance(x, Linearization)
        wm = x.want_metric if lin else None
        x = x.val if lin else x
Philipp Arras's avatar
Philipp Arras committed
437
438
        v1 = x.extract(self._op1.domain)
        v2 = x.extract(self._op2.domain)
Philipp Arras's avatar
Philipp Arras committed
439
        if not lin:
440
            return self._op1(v1) * self._op2(v2)
441
442
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Philipp Arras's avatar
Philipp Arras committed
443
444
        jac = (makeOp(lin1._val)(lin2._jac))._myadd(makeOp(lin2._val)(lin1._jac), False)
        return lin1.new(lin1._val*lin2._val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
445

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
446
    def _simplify_for_constant_input_nontrivial(self, c_inp):
447
448
449
450
451
452
453
454
455
456
457
458
459
        f1, o1 = self._op1.simplify_for_constant_input(
            c_inp.extract_part(self._op1.domain))
        f2, o2 = self._op2.simplify_for_constant_input(
            c_inp.extract_part(self._op2.domain))

        from ..multi_domain import MultiDomain
        if not isinstance(self._target, MultiDomain):
            return None, _OpProd(o1, o2)

        cc = _ConstCollector()
        cc.mult(f1, o1.target)
        cc.mult(f2, o2.target)
        return cc.constfield, _OpProd(o1, o2)
Martin Reinecke's avatar
Martin Reinecke committed
460

Philipp Arras's avatar
Philipp Arras committed
461
462
463
464
465
    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpProd:\n"+indent(subs)


Martin Reinecke's avatar
Martin Reinecke committed
466
467
class _OpSum(Operator):
    def __init__(self, op1, op2):
Philipp Arras's avatar
Philipp Arras committed
468
        from ..sugar import domain_union
Martin Reinecke's avatar
Martin Reinecke committed
469
470
471
472
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = domain_union((op1.target, op2.target))
        self._op1 = op1
        self._op2 = op2
Philipp Arras's avatar
Philipp Arras committed
473

Philipp Arras's avatar
Philipp Arras committed
474
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
475
        from ..linearization import Linearization
476
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
477
478
479
        if not isinstance(x, Linearization):
            v1 = x.extract(self._op1.domain)
            v2 = x.extract(self._op2.domain)
Martin Reinecke's avatar
Martin Reinecke committed
480
            return self._op1(v1).unite(self._op2(v2))
Philipp Arras's avatar
Philipp Arras committed
481
482
483
        v1 = x.val.extract(self._op1.domain)
        v2 = x.val.extract(self._op2.domain)
        wm = x.want_metric
484
485
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
486
        op = lin1._jac._myadd(lin2._jac, False)
Philipp Arras's avatar
Philipp Arras committed
487
        res = lin1.new(lin1._val.unite(lin2._val), op)
Martin Reinecke's avatar
Martin Reinecke committed
488
        if lin1._metric is not None and lin2._metric is not None:
Philipp Arras's avatar
Philipp Arras committed
489
            res = res.add_metric(lin1._metric._myadd(lin2._metric, False))
Philipp Arras's avatar
Philipp Arras committed
490
        return res
491

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
492
    def _simplify_for_constant_input_nontrivial(self, c_inp):
493
494
495
496
497
498
499
500
501
502
503
504
505
        f1, o1 = self._op1.simplify_for_constant_input(
            c_inp.extract_part(self._op1.domain))
        f2, o2 = self._op2.simplify_for_constant_input(
            c_inp.extract_part(self._op2.domain))

        from ..multi_domain import MultiDomain
        if not isinstance(self._target, MultiDomain):
            return None, _OpSum(o1, o2)

        cc = _ConstCollector()
        cc.add(f1, o1.target)
        cc.add(f2, o2.target)
        return cc.constfield, _OpSum(o1, o2)
Philipp Arras's avatar
Philipp Arras committed
506
507
508
509

    def __repr__(self):
        subs = "\n".join(sub.__repr__() for sub in (self._op1, self._op2))
        return "_OpSum:\n"+indent(subs)