test_lm_space.py 3.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Jait Dixit's avatar
Jait Dixit committed
19
20
21
import unittest
import numpy as np

22
23
24
from numpy.testing import assert_, assert_equal, assert_raises,\
        assert_almost_equal
from d2o import distributed_data_object
Jait Dixit's avatar
Jait Dixit committed
25
26
27
from nifty import LMSpace
from test.common import expand

Martin Reinecke's avatar
Martin Reinecke committed
28
# [lmax, expected]
29
CONSTRUCTOR_CONFIGS = [
Martin Reinecke's avatar
Martin Reinecke committed
30
        [5, {
Jait Dixit's avatar
Jait Dixit committed
31
32
33
34
35
36
37
            'lmax': 5,
            'mmax': 5,
            'shape': (36,),
            'harmonic': True,
            'dim': 36,
            'total_volume': 36.0,
            }],
Martin Reinecke's avatar
Martin Reinecke committed
38
        [7, {
Jait Dixit's avatar
Jait Dixit committed
39
40
41
42
43
44
45
            'lmax': 7,
            'mmax': 7,
            'shape': (64,),
            'harmonic': True,
            'dim': 64,
            'total_volume': 64.0,
            }],
Martin Reinecke's avatar
Martin Reinecke committed
46
        [-1, {
Jait Dixit's avatar
Jait Dixit committed
47
48
49
50
            'error': ValueError
            }]
    ]

Theo Steininger's avatar
Theo Steininger committed
51

Martin Reinecke's avatar
Martin Reinecke committed
52
53
54
55
56
def _distance_array_helper(index_arr, lmax):
    if index_arr <= lmax:
        index_half = index_arr
    else:
        if (index_arr - lmax) % 2 == 0:
57
            index_half = (index_arr + lmax)/2
Martin Reinecke's avatar
Martin Reinecke committed
58
        else:
59
            index_half = (index_arr + lmax + 1)/2
Martin Reinecke's avatar
Martin Reinecke committed
60

61
62
    m = np.ceil(((2*lmax + 1) - np.sqrt((2*lmax + 1)**2 -
                 8*(index_half - lmax)))/2).astype(int)
Martin Reinecke's avatar
Martin Reinecke committed
63

64
    return index_half - m*(2*lmax + 1 - m)//2
Martin Reinecke's avatar
Martin Reinecke committed
65

Theo Steininger's avatar
Theo Steininger committed
66

67
def get_distance_array_configs():
Martin Reinecke's avatar
Martin Reinecke committed
68
    da_0 = [_distance_array_helper(idx, 5) for idx in np.arange(36)]
Martin Reinecke's avatar
Martin Reinecke committed
69
    return [[5, da_0]]
70
71
72


def get_weight_configs():
Martin Reinecke's avatar
Martin Reinecke committed
73
74
    np.random.seed(42)
    w_0_x = np.random.rand(32, 16, 6)
75
    return [
Martin Reinecke's avatar
Martin Reinecke committed
76
77
        [w_0_x, 1, None, False, w_0_x],
        [w_0_x.copy(), 1, None,  True, w_0_x]
78
79
        ]

Theo Steininger's avatar
Theo Steininger committed
80

81
def get_hermitian_configs():
Martin Reinecke's avatar
Martin Reinecke committed
82
83
84
85
    np.random.seed(42)
    h_0_res_real = np.random.rand(32, 16, 6).astype(np.complex128)
    h_0_res_imag = np.random.rand(32, 16, 6).astype(np.complex128)
    h_0_x = h_0_res_real + h_0_res_imag * 1j
86
    return [
Martin Reinecke's avatar
Martin Reinecke committed
87
        [h_0_x, h_0_res_real, h_0_res_imag]
88
89
    ]

Theo Steininger's avatar
Theo Steininger committed
90

91
class LMSpaceInterfaceTests(unittest.TestCase):
Jait Dixit's avatar
Jait Dixit committed
92
93
94
    @expand([['lmax', int],
            ['mmax', int],
            ['dim', int]])
95
    def test_property_ret_type(self, attribute, expected_type):
96
        l = LMSpace(7)
97
        assert_(isinstance(getattr(l, attribute), expected_type))
Jait Dixit's avatar
Jait Dixit committed
98
99
100


class LMSpaceFunctionalityTests(unittest.TestCase):
101
    @expand(CONSTRUCTOR_CONFIGS)
Martin Reinecke's avatar
Martin Reinecke committed
102
    def test_constructor(self, lmax, expected):
103
104
        if 'error' in expected:
            with assert_raises(expected['error']):
Martin Reinecke's avatar
Martin Reinecke committed
105
                LMSpace(lmax)
Jait Dixit's avatar
Jait Dixit committed
106
        else:
Martin Reinecke's avatar
Martin Reinecke committed
107
            l = LMSpace(lmax)
108
109
            for key, value in expected.iteritems():
                assert_equal(getattr(l, key), value)
Jait Dixit's avatar
Jait Dixit committed
110

111
112
    @expand(get_hermitian_configs())
    def test_hermitian_decomposition(self, x, real, imag):
113
114
115
116
117
118
        l = LMSpace(5)
        assert_almost_equal(
            l.hermitian_decomposition(distributed_data_object(x))[0],
            real)
        assert_almost_equal(
            l.hermitian_decomposition(distributed_data_object(x))[1],
Theo Steininger's avatar
Theo Steininger committed
119
            imag*1j)
Jait Dixit's avatar
Jait Dixit committed
120

121
122
    @expand(get_weight_configs())
    def test_weight(self, x, power, axes, inplace, expected):
123
124
125
126
127
        l = LMSpace(5)
        res = l.weight(x, power, axes, inplace)
        assert_almost_equal(res, expected)
        if inplace:
            assert_(x is res)
Jait Dixit's avatar
Jait Dixit committed
128

129
    @expand(get_distance_array_configs())
Martin Reinecke's avatar
Martin Reinecke committed
130
131
    def test_distance_array(self, lmax, expected):
        l = LMSpace(lmax)
132
        assert_almost_equal(l.get_distance_array('not').data, expected)