### Man pages for generalized_eigenvalues

parent 72daaf22
 ... ... @@ -451,6 +451,7 @@ dist_man_MANS = \ man/elpa_eigenvalues.3 \ man/elpa_eigenvectors.3 \ man/elpa_generalized_eigenvectors.3 \ man/elpa_generalized_eigenvalues.3 \ man/elpa_cholesky.3 \ man/elpa_invert_triangular.3 \ man/elpa_solve_tridiagonal.3 \ ... ...
 .TH "elpa_generalized_eigenvalues" 3 "Wed Mar 14 2018" "ELPA" \" -*- nroff -*- .ad l .nh .SH NAME elpa_generalized_eigenvalues \- computes the eigenvalues of a generalized eigenvalue problem for real symmetric or complex hermitian matrices .br .SH SYNOPSIS .br .SS FORTRAN INTERFACE use elpa .br class(elpa_t), pointer :: elpa .br .RI "call elpa%\fBgeneralized_eigenvalues\fP (a, b, ev, is_already_decomopsed, error)" .br .RI " " .br .RI "With the definitions of the input and output variables:" .br .RI "class(elpa_t) :: \fBelpa\fP ! returns an instance of the ELPA object" .br .TP .RI "datatype :: \fBa\fP" The matrix a for which the eigenvalues should be computed. The dimensions of matrix a must be set \fIBEFORE\fP with the methods \fBelpa_set\fP(3) and \fBelpa_setup\fP(3). The datatype of the matrix can be one of "real(kind=c_double)", "real(kind=c_float)", "complex(kind=c_double)", or "complex(kind=c_float)" .TP .RI "datatype :: \fBb\fP" The matrix b defining the generalized eigenvalue problem. The dimensions and datatype of the matrix b has to be the same as for matrix a. .TP .RI "datatype :: \fBev\fP" The vector ev where the eigenvalues will be stored in \fIascending\fP order. The datatype of the vector ev can be either "real(kind=c_double)", or "real(kind=c_float)", depending of the datatype of the matrix. Note that complex hermitian matrices also have real valued eigenvalues. .TP .RI "logical :: \fBis_already_decomposed\fP" Has to be set to .false. for the first call with a given b and .true. for each subsequent call with the same b, since b then already contains decomposition and thus the decomposing step is skipped. .TP .RI "integer, optional :: \fBerror\fP" The return error code of the function. Should be "ELPA_OK". The error code can be querried with the function \fBelpa_strerr\fP(3) .br .SS C INTERFACE #include .br elpa_t handle; .br .RI "void \fBelpa_generalized_eigenvalues\fP(\fBelpa_t\fP handle, \fBdatatype\fP *a, \fBdatatype\fP *b, \fBdatatype\fP *ev, \fBint\fP is_already_decomposed, \fBint\fP *error);" .br .RI " " .br .RI "With the definitions of the input and output variables:" .br .TP .RI "elpa_t \fBhandle\fP;" The handle to the ELPA object .TP .RI "datatype *\fBa\fP;" The matrix a for which the eigenvalues should be computed. The dimensions of the matrix must be set \fIBEFORE\fP with the methods \fBelpa_set\fP(3) and \fBelpa_setup\fP(3). The \fBdatatype\fP can be one of "double", "float", "double complex", or "float complex". .TP .RI "datatype *\fBb\fP;" The matrix b defining the generalized eigenvalue problem. The dimensions and the datatype of the matrix b must be the same as matrix a. .TP .RI "datatype *\fBev\fP;" The storage for the computed eigenvalues. Eigenvalues will be stored in \fIascendig\fP order. The \fBdatatype\fP can be either "double" or "float". Note that the eigenvalues of complex hermitian matrices are also real. .TP .RI "int \fBis_already_decomposed\fP;" Has to be set to 0 for the first call with a given b and 1 for each subsequent call with the same b, since b then already contains decomposition and thus the decomposing step is skipped. .TP .RI "int *\fBerror\fP;" The error code of the function. Should be "ELPA_OK". The error codes can be querried with \fBelpa_strerr\fP(3) .SH DESCRIPTION Compute the generalized eigenvalues and (parts of) the eigenvector spectrum of a real symmtric or complex hermitian matrix.The functions \fBelpa_init\fP(3), \fBelpa_allocate\fP(3), \fBelpa_set\fP(3), and \fBelpa_setup\fP(3) must be called \fIBEFORE\fP \fBelpa_generalized_eigenvalues\fP can be called. Especially the number of eigenvectors to be computed can be set with \fPelpa_set\fB(3). Unlike in the case of ordinary eigenvalue problem, the generalized problem calls some external scalapack routines. The user is responsible for initialization of the blacs context, which then has to be passed to elpa by \fPelpa_set\fB(3) \fIBEFORE\fP \fBelpa_generalized_eigenvalues\fP can be called. .br .SH "SEE ALSO" .br \fBelpa2_print_kernels\fP(1) \fBelpa_init\fP(3) \fBelpa_allocate\fP(3) \fBelpa_set\fP(3) \fBelpa_setup\fP(3) \fBelpa_strerr\fP(3) \fBelpa_eigenvalues\fP(3) \fBelpa_eigenvectors\fP(3) \fBelpa_cholesky\fP(3) \fBelpa_invert_triangular\fP(3) \fBelpa_solve_tridiagonal\fP(3) \fBelpa_hermitian_multiply\fP(3) \fBelpa_uninit\fP(3) \fBelpa_deallocate\fP(3)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!