USERS_GUIDE.md 16.1 KB
Newer Older
Andreas Marek's avatar
Andreas Marek committed
1
## Users guide for the *ELPA* library ##
Andreas Marek's avatar
Andreas Marek committed
2

3 4 5 6 7
This document provides the guide for using the *ELPA* library with the new API (API version 20170403 or higher).
If you want to use the deprecated legacy API (we strongly recommend against this), please refer to the document
[USERS_GUIDE_DEPRECATED_LEGACY_API.md] (USERS_GUIDE_DEPRECATED_LEGACY_API.md).

If you need instructions on how to build *ELPA*, please look at [INSTALL.md] (INSTALL.md).
Andreas Marek's avatar
Andreas Marek committed
8 9 10 11 12

### Online and local documentation ###

Local documentation (via man pages) should be available (if *ELPA* has been installed with the documentation):

13
For example "man elpa2_print_kernels" should provide the documentation for the *ELPA* program, which prints all
14
the available kernels.
Andreas Marek's avatar
Andreas Marek committed
15

16
Also a [online doxygen documentation] (http://elpa.mpcdf.mpg.de/html/Documentation/ELPA-2018.11.001.rc1/html/index.html)
Andreas Marek's avatar
Andreas Marek committed
17 18
for each *ELPA* release is available.

19

20
### API of the *ELPA* library ###
21

22 23
With release 2017.05.001 of the *ELPA* library the interface has been rewritten substantially, in order to have a more generic 
interface and to avoid future interface changes.
24 25

For compatibility reasons the interface defined in the previous release 2016.11.001 is also still available
26
**IF AND ONLY IF** *ELPA* has been build with support of this legacy interface.
27

28
The legacy API defines all the functionality as it has been defined in *ELPA* release 2016.11.011. Note, however,
29
that all future features of *ELPA* will only be accessible via the new API defined in release 2017.05.001 or later.
30

31 32 33 34 35 36 37 38 39 40 41 42 43
As mentioned, we advise against it, but if you want to use the legacy API please look at the document 
[USERS_GUIDE_DEPRECATED_LEGACY_API.md] (USERS_GUIDE_DEPRECATED_LEGACY_API.md).

### Table of Contents: ###

- I)   General concept of the *ELPA* API
- II)  List of supported tunable parameters
- III) List of computational routines
- IV)  Using OpenMP threading
- V)   Influencing default values with environment variables
- VI)   Autotuning

## I) General concept of the *ELPA* API ##
44

45
Using *ELPA* just requires a few steps:
46

Andreas Marek's avatar
Andreas Marek committed
47 48
- include elpa headers "elpa/elpa.h" (C-Case) or use the Fortran module "use elpa"

49
- define a instance of the elpa type
Andreas Marek's avatar
Andreas Marek committed
50

51
- call elpa_init
Andreas Marek's avatar
Andreas Marek committed
52

53
- call elpa_allocate to allocate an instance of *ELPA*
Andreas Marek's avatar
Andreas Marek committed
54 55 56 57 58 59 60 61 62
  note that you can define (and configure individually) as many different instances
  for ELPA as you want, e.g. one for CPU only computations and for larger matrices on GPUs

- use ELPA-type function "set" to set matrix and MPI parameters

- call the ELPA-type function "setup"

- set or get all possible ELPA tunable options with ELPA-type functions get/set

63 64
- call ELPA-type function solve or others

Andreas Marek's avatar
Andreas Marek committed
65
- if the ELPA object is not needed any more call ELPA-type function destroy
66

Andreas Marek's avatar
Andreas Marek committed
67
- call elpa_uninit at the end of the program
68

69 70 71 72 73 74 75 76
To be more precise a basic call sequence for Fortran and C looks as follows:

Fortran synopsis

```Fortran
 use elpa
 class(elpa_t), pointer :: elpa
 integer :: success
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
 if (elpa_init(20171201) /= ELPA_OK) then        ! put here the API version that you are using
    print *, "ELPA API version not supported"
    stop
  endif
  elpa => elpa_allocate()

  ! set parameters decribing the matrix and it's MPI distribution
  call elpa%set("na", na, success)                          ! size of the na x na matrix
  call elpa%set("nev", nev, success)                        ! number of eigenvectors that should be computed ( 1<= nev <= na)
  call elpa%set("local_nrows", na_rows, success)            ! number of local rows of the distributed matrix on this MPI task 
  call elpa%set("local_ncols", na_cols, success)            ! number of local columns of the distributed matrix on this MPI task
  call elpa%set("nblk", nblk, success)                      ! size of the BLACS block cyclic distribution
  call elpa%set("mpi_comm_parent", MPI_COMM_WORLD, success) ! the global MPI communicator
  call elpa%set("process_row", my_prow, success)            ! row coordinate of MPI process
  call elpa%set("process_col", my_pcol, success)            ! column coordinate of MPI process
93

94
  succes = elpa%setup()
95

96 97 98 99
  ! if desired, set any number of tunable run-time options
  ! look at the list of possible options as detailed later in
  ! USERS_GUIDE.md
  call e%set("solver", ELPA_SOLVER_2STAGE, success)
100

101 102 103 104
  ! set the AVX BLOCK2 kernel, otherwise ELPA_2STAGE_REAL_DEFAULT will
  ! be used
  call e%set("real_kernel", ELPA_2STAGE_REAL_AVX_BLOCK2, success)

105 106 107 108
  ! use method solve to solve the eigenvalue problem to obtain eigenvalues
  ! and eigenvectors
  ! other possible methods are desribed in USERS_GUIDE.md
  call e%eigenvectors(a, ev, z, success)
109

110 111
  ! cleanup
  call elpa_deallocate(e)
112

113 114
  call elpa_uninit()
```
115

116 117 118
C Synopsis:
```C
   #include <elpa/elpa.h>
119

120 121
   elpa_t handle;
   int error;
122

123 124 125 126
   if (elpa_init(20171201) != ELPA_OK) {                          // put here the API version that you are using
     fprintf(stderr, "Error: ELPA API version not supported");
     exit(1);
   }
127

128
   handle = elpa_allocate(&error);
129

130 131 132 133 134 135 136 137 138
   /* Set parameters the matrix and it's MPI distribution */
   elpa_set(handle, "na", na, &error);                                           // size of the na x na matrix
   elpa_set(handle, "nev", nev, &error);                                         // number of eigenvectors that should be computed ( 1<= nev <= na)
   elpa_set(handle, "local_nrows", na_rows, &error);                             // number of local rows of the distributed matrix on this MPI task 
   elpa_set(handle, "local_ncols", na_cols, &error);                             // number of local columns of the distributed matrix on this MPI task
   elpa_set(handle, "nblk", nblk, &error);                                       // size of the BLACS block cyclic distribution
   elpa_set(handle, "mpi_comm_parent", MPI_Comm_c2f(MPI_COMM_WORLD), &error);    // the global MPI communicator
   elpa_set(handle, "process_row", my_prow, &error);                             // row coordinate of MPI process
   elpa_set(handle, "process_col", my_pcol, &error);                             // column coordinate of MPI process
139

140 141
   /* Setup */
   elpa_setup(handle);
142

143 144 145
   /* if desired, set any number of tunable run-time options */
   /* look at the list of possible options as detailed later in
      USERS_GUIDE.md */
146

147
   elpa_set(handle, "solver", ELPA_SOLVER_2STAGE, &error);
148 149 150 151
  
   // set the AVX BLOCK2 kernel, otherwise ELPA_2STAGE_REAL_DEFAULT will
   // be used
   elpa_set(handle, "real_kernel", ELPA_2STAGE_REAL_AVX_BLOCK2, &error)
152

153 154 155
   /* use method solve to solve the eigenvalue problem */
   /* other possible methods are desribed in USERS_GUIDE.md */
   elpa_eigenvectors(handle, a, ev, z, &error);
156

157 158 159 160
   /* cleanup */
   elpa_deallocate(handle);
   elpa_uninit();
```
161

162
## II) List of supported tunable parameters ##
163

164
The following table gives a list of all supported parameters which can be used to tune (influence) the runtime behaviour of *ELPA* ([see here if you cannot read it in your editor] (https://gitlab.mpcdf.mpg.de/elpa/elpa/wikis/USERS_GUIDE))
165

166 167 168 169 170 171 172 173 174 175 176
| Parameter name | Short description     | default value               | possible values         | since API version | 
| :------------- |:--------------------- | :-------------------------- | :---------------------- | :---------------- | 
| solver         | use ELPA 1 stage <br>  or 2 stage solver | ELPA_SOLVER_1STAGE          | ELPA_SOLVER_1STAGE <br> ELPA_SOLVER_2STAGE      | 20170403          |
| gpu            | use GPU (if build <br> with GPU support)| 0                           | 0 or 1             | 20170403          | 
| real_kernel    | real kernel to be <br> used in ELPA 2 | ELPA_2STAGE_REAL_DEFAULT    | see output of <br> elpa2_print_kernels    | 20170403          |
| complex kernel | complex kernel to <br>  be used in ELPA 2 | ELPA_2STAGE_COMPLEX_DEFAULT | see output of <br>  elpa2_print_kernels     | 20170403          |
| omp_threads    | OpenMP threads used <br> (if build with OpenMP <br> support) | 1 | >1 | 20180525 |
| qr | Use QR decomposition in <br> ELPA 2 real | 0 | 0 or 1 |  20170403  |
| timings | Enable time <br> measurement | 1 | 0 or 1 |  20170403  |
| debug | give debug information | 0 | 0 or 1 | 20170403  |
       
177

178
## III) List of computational routines ##
179

180
The following compute routines are available in *ELPA*: Please have a look at the man pages or  [online doxygen documentation] (http://elpa.mpcdf.mpg.de/html/Documentation/ELPA-2018.11.001.rc1/html/index.html) for details.
181 182


183 184 185 186 187 188 189 190 191
| Name         | Purpose                                                                 | since API version |
| :----------- | :---------------------------------------------------------------------- | :---------------- |
| eigenvectors | solve std. eigenvalue problem <br> compute eigenvalues and eigenvectors | 20170403  |
| eigenvalues  | solve std. eigenvalue problem <br> compute eigenvalues only             | 20170403  |
| generalized_eigenvectors | solve generalized eigenvalule problem <br> compute eigenvalues and eigenvectors | 20180525 |
| generalized_eigenvalues  | solve generalized eigenvalule problem <br> compute eigenvalues only             | 20180525 |
| hermitian_multiply       | do (real) a^T x b <br> (complex) a^H x b                                        | 20170403 |
| cholesky                 | do cholesky factorisation                                                       | 20170403 |
| invert_triangular        | invert a upper triangular matrix                                                | 20170403 |
192
| solve_tridiagonal        | solve EVP for a tridiagonal matrix                                              | 20170403 |
193 194


195
## IV) Using OpenMP threading ##
196

197 198 199
If *ELPA* has been build with OpenMP threading support you can specify the number of OpenMP threads that *ELPA* will use internally.
Please note that it is **mandatory**  to set the number of threads to be used with the OMP_NUM_THREADS environment variable **and**
with the **set method** 
200

201 202 203
```Fortran
call e%set("omp_threads", 4, error)
```
204

205
**or the *ELPA* environment variable**
206

207
export ELPA_DEFAULT_omp_threads=4 (see Section V for an explanation of this variable).
208

209
Just setting the environment variable OMP_NUM_THREADS is **not** sufficient.
210

211
This is necessary to make the threading an autotunable option.
212

213
## V) Influencing default values with environment variables ##
214

215 216
For each tunable parameter mentioned in Section II, there exists a default value. This means, that if this parameter is **not explicitly** set by the user by the
*ELPA* set method, *ELPA* takes the default value for the parameter. E.g. if the user does not set a solver method, than *ELPA* will take the default "ELPA_SOLVER_1STAGE".
217

218
The user can change this default value by setting an enviroment variable to the desired value.
219

220 221 222 223
The name of this variable is always constructed in the following way:
```
ELPA_DEFAULT_tunable_parameter_name=value
```
224

225
, e.g. in case of the solver the user can
226

227 228 229
```
export ELPA_DEFAULT_solver=ELPA_SOLVER_2STAGE
```
230

231
in order to define the 2stage solver as the default.
232

233 234 235 236 237 238 239
**Important note**
The default valule is completly ignored, if the user has manually set a parameter-value pair with the *ELPA* set method!
Thus the above environemnt variable will **not** have an effect, if the user code contains a line
```Fortran
call e%set("solver",ELPA_SOLVER_1STAGE,error)
```
.
240

241
## VI) Using autotuning ##
242

243 244
Since API version 20171201 *ELPA* supports the autotuning of some "tunable" parameters (see Section II). The idea is that if *ELPA* is called multiple times (like typical in
self-consistent-iterations) some parameters can be tuned to an optimal value, which is hard to set for the user. Note, that not every parameter mentioned in Section II can actually be tuned with the autotuning. At the moment, only the parameters mentioned in the table below are affected by autotuning.
245

246
There are two ways, how the user can influence the autotuning steps:
247

248 249 250
1.) the user can set one of the following autotuning levels
- ELPA_AUTOTUNE_FAST
- ELPA_AUTOTUNE_MEDIUM
251

252 253
Each level defines a different set of tunable parameter. The autouning option will be extended by future releases of the *ELPA* library, at the moment the following
sets are supported: 
254

255 256 257 258 259 260
| AUTOTUNE LEVEL          | Parameters                                              |
| :---------------------- | :------------------------------------------------------ |
| ELPA_AUTOTUNE_FAST      | { solver, real_kernel, complex_kernel, omp_threads }    |
| ELPA_AUTOTUNE_MEDIUM    | all of abvoe + { gpu, partly gpu }                      |
| ELPA_AUTOTUNE_EXTENSIVE | all of above + { various blocking factors, stripewidth, |
|                         | intermediate_bandwidth }                                |
261

262 263
2.) the user can **remove** tunable parameters from the list of autotuning possibilites by explicetly setting this parameter,
e.g. if the user sets in his code 
264

265 266 267 268
```Fortran
call e%set("solver", ELPA_SOLVER_2STAGE, error)
```
**before** invoking the autotuning, then the solver is fixed and not considered anymore for autotuning. Thus the ELPA_SOLVER_1STAGE would be skipped and, consequently, all possible autotuning parameters, which depend on ELPA_SOLVER_1STAGE.
269

270
The user can invoke autotuning in the following way:
271 272


273
Fortran synopsis
274

275 276 277 278 279 280 281
```Fortran
 ! prepare elpa as you are used to (see Section I)
 ! only steps for autotuning are commentd
 use elpa
 class(elpa_t), pointer :: elpa
 class(elpa_autotune_t), pointer :: tune_state   ! create an autotuning pointer
 integer :: success
282

283 284 285 286 287
 if (elpa_init(20171201) /= ELPA_OK) then
    print *, "ELPA API version not supported"
    stop
  endif
  elpa => elpa_allocate()
288

289 290 291 292 293 294 295 296 297
  ! set parameters decribing the matrix and it's MPI distribution
  call elpa%set("na", na, success)
  call elpa%set("nev", nev, success))
  call elpa%set("local_nrows", na_rows, success)
  call elpa%set("local_ncols", na_cols, success)
  call elpa%set("nblk", nblk, success)
  call elpa%set("mpi_comm_parent", MPI_COMM_WORLD, success)
  call elpa%set("process_row", my_prow, success)
  call elpa%set("process_col", my_pcol, success)
298

299
  succes = elpa%setup()
300

301
  tune_state => e%autotune_setup(ELPA_AUTOTUNE_MEDIUM, ELPA_AUTOTUNE_DOMAIN_REAL, error)   ! prepare autotuning, set AUTOTUNE_LEVEL and the domain (real or complex)
302

303 304 305
  ! do the loop of subsequent ELPA calls which will be used to do the autotuning
  do i=1, scf_cycles
    unfinished = e%autotune_step(tune_state)   ! check whether autotuning is finished; If not do next step
306

307 308 309
    if (.not.(unfinished)) then
      print *,"autotuning finished at step ",i
    endif
310

311
    call e%eigenvectors(a, ev, z, error)       ! do the normal computation
312

313
  enddo
314

315
  call e%autotune_set_best(tune_state)         ! from now use the values found by autotuning
316

317 318
  call elpa_autotune_deallocate(tune_state)    ! cleanup autotuning object 
```
319

320 321 322 323
C Synopsis
```C
   /* prepare ELPA the usual way; only steps for autotuning are commented */
   #include <elpa/elpa.h>
324

325 326 327
   elpa_t handle;
   elpa_autotune_t autotune_handle;                               // handle for autotuning
   int error;
328

329 330 331 332
   if (elpa_init(20171201) != ELPA_OK) { 
     fprintf(stderr, "Error: ELPA API version not supported");
     exit(1);
   }
333

334
   handle = elpa_allocate(&error);
335

336 337 338 339 340 341 342 343 344 345 346
   /* Set parameters the matrix and it's MPI distribution */
   elpa_set(handle, "na", na, &error);
   elpa_set(handle, "nev", nev, &error);
   elpa_set(handle, "local_nrows", na_rows, &error);
   elpa_set(handle, "local_ncols", na_cols, &error);
   elpa_set(handle, "nblk", nblk, &error);
   elpa_set(handle, "mpi_comm_parent", MPI_Comm_c2f(MPI_COMM_WORLD), &error);
   elpa_set(handle, "process_row", my_prow, &error);
   elpa_set(handle, "process_col", my_pcol, &error);
   /* Setup */
   elpa_setup(handle);
347

348
   autotune_handle = elpa_autotune_setup(handle, ELPA_AUTOTUNE_FAST, ELPA_AUTOTUNE_DOMAIN_REAL, &error);   // create autotune object
349

350 351
   // repeatedl call ELPA, e.g. in an scf iteration
   for (i=0; i < scf_cycles; i++) {
352

353
     unfinished = elpa_autotune_step(handle, autotune_handle);      // check whether autotuning finished. If not do next step
354

355 356 357
     if (unfinished == 0) {
       printf("ELPA autotuning finished in the %d th scf step \n",i);
      }
358 359


360 361 362 363 364 365 366
      /* do the normal computation */
      elpa_eigenvectors(handle, a, ev, z, &error);
   }
   elpa_autotune_set_best(handle, autotune_handle);  // from now on use values used by autotuning
   elpa_autotune_deallocate(autotune_handle);        // cleanup autotuning
   
```
367

368
  
369 370 371