s_Cannons_Mult2.c 50.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
//    This file is part of ELPA.
//
//    The ELPA library was originally created by the ELPA consortium,
//    consisting of the following organizations:
//
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
//    - IBM Deutschland GmbH
//
//    This particular source code file has been developed within the ELPA-AEO //
//    project, which has been a joint effort of
//
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Technische Universität München, Lehrstuhl für Theoretische Chemie,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,

//    More information can be found here:
//    http://elpa.mpcdf.mpg.de/ and
//    http://elpa-aeo.mpcdf.mpg.de
//
//    ELPA is free software: you can redistribute it and/or modify
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA.  If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
// Author: Valeriy Manin (Bergische Universität Wuppertal)
// integreated into the ELPA library Pavel Kus, Andeas Marek (MPCDF)


58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
#include <stdio.h>
#include <stdlib.h>
#ifdef WITH_MPI
#include <mpi.h>
#endif
#include <math.h>

#include <elpa/elpa.h>
#include <elpa/elpa_generated.h>
#include <elpa/elpa_constants.h>
#include <elpa/elpa_generated_legacy.h>
#include <elpa/elpa_generic.h>
#include <elpa/elpa_legacy.h>

void slacpy_(char*, int*, int*, float*, int*, float*, int*);
void sgemm_(char*, char*, int*, int*, int*, float*, float*, int*, float*, int*, float*, float*, int*); 
void pstran_(int*, int*, float*, float*, int*, int*, int*, float*, float*, int*, int*, int*);
void pstrmm_(char*, char*, char*, char*, int*, int*, float*, float*, int*, int*, int*, float*, int*, int*, int*);
void descinit_(int*, int*, int*, int*, int*, int*, int*, int*, int*, int*);
int numroc_(int*, int*, int*, int*, int*);
void set_up_blacsgrid_f1(int, int*, int*, int*, int*, int*, int*, int*);

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////////////////// My function for multiplication 2 //////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void s_Cannons_Mult2(float* L, float* U, int np_rows, int np_cols, int my_prow, int my_pcol, int* a_desc, float *Res, MPI_Comm row_comm, MPI_Comm col_comm)
{
   // Input matrices: 
   //   - L: lower triangular matrix
   //   - U: upper triangular matrix
   // Output matrix: 
   //   - Lower triangular part of L*U 
   // row_comm: communicator along rows
   // col_comm: communicator along columns

   int na, nblk;

   int i, j, ii, Size_send_L, Size_receive_L, Size_send_U, Size_receive_U, num_of_blocks_in_U_buffer, row_of_origin_U, col_of_origin_L, Nb, owner; 
   
   float *Buf_to_send_L, *Buf_to_receive_L, *Buf_to_send_U, *Buf_to_receive_U, *U_local_start_curr, *CopyFrom, *CopyTo;
  
   int curr_col_loc, where_to_send_L, from_where_to_receive_L, where_to_send_U, from_where_to_receive_U, rows_in_block, cols_in_block, cols_in_buffer_L, cols_in_buffer_L_my_initial, rows_in_buffer_L, rows_in_buffer_L_my_initial, cols_in_buffer_U, rows_in_buffer_U;
   
   float *L_local_start, *Buf_pos, *U_local_start, *float_ptr, *Res_ptr, *Buf_L;
   
   int LDA_L, rows_in_block_U_curr, ratio, rows_in_buffer, proc_col_min, num_of_iters, rows_in_block_U, curr_row_loc; 
   
   int curr_col_loc_res, curr_row_loc_res, curr_row_loc_L, curr_col_loc_U, curr_col_glob_res, L_local_index, LDA_L_new, index_row_L_for_LDA, Size_receive_L_now, cols_in_buffer_L_now, rows_in_buffer_L_now, intNumber, Size_U_stored; 
   
   MPI_Status status;

   int one = 1;
   int zero = 0; 
   float done = 1.0;
   float dzero = 0.0;
   int na_rows, na_cols;
      
   na = a_desc[2];
   nblk = a_desc[4]; 
   na_rows = numroc_(&na, &nblk, &my_prow, &zero, &np_rows);
   na_cols = numroc_(&na, &nblk, &my_pcol, &zero, &np_cols);
   
   MPI_Request request_L_Recv; 
   MPI_Request request_L_Send;
   MPI_Request request_U_Recv; 
   MPI_Request request_U_Send;
   
   if (np_cols%np_rows != 0)
   {
      if((my_prow == 0)&& (my_pcol ==0))
         printf("!!!!! np_cols must be a multiple of np_rows!!!!! I do nothing! \n");
      return;
   }
   if (np_cols < np_rows != 0)
   {
      if((my_prow == 0)&& (my_pcol ==0))
         printf("np_cols < np_rows \n");
      return;
   }
   
   ratio = np_cols/np_rows; 
   
///////////////////////////////////////////////////////////////// Start of algorithm ///////////////////////////////////////////////////////////////////////////////////////////////
   
   /////////////////////////memory allocation area//////////////////////////////////////////////////////////////
   
   intNumber = ceil((float)na/(float)(np_cols*nblk));   // max. possible number of the local block columns of U
   Size_U_stored = ratio*nblk*nblk*intNumber*(intNumber+1)/2 + 2;   // number of local elements from the upper triangular part that every proc. has (max. possible value among all the procs.)
     
   Buf_to_send_L = malloc(ratio*Size_U_stored*sizeof(float));
   Buf_to_receive_L = malloc(ratio*Size_U_stored*sizeof(float));
   Buf_to_send_U = malloc(Size_U_stored*sizeof(float));
   Buf_to_receive_U = malloc(Size_U_stored*sizeof(float));
   if(ratio != 1)
      Buf_L = malloc(Size_U_stored*sizeof(float));   // in this case we will receive data into initial buffer and after place block-columns to the needed positions of buffer for calculation
                    
   /////////////////////////////////////////////////////////////// initial reordering of L ///////////////////////////////////////////////////////////////////////////////////////// 
   // here we assume, that np_rows < np_cols; then I will send to the number of processors equal to <ratio> with the "leap" equal to np_rows; the same holds for receive  
   if((ratio != 1)||(my_prow != 0))   // if grid is rectangular or my_prow is not 0
      Buf_pos = Buf_to_send_L;     // I will copy to the send buffer
   else
      Buf_pos = Buf_to_receive_L;  // if grid is square and my_prow is 0, then I will copy to the received buffer
   
   // form array to send by block-columns; we need only lower triangular part
   num_of_iters = ceil((float)na_cols/(float)nblk);             // number my of block-columns
   
   cols_in_buffer_L_my_initial = 0;
   Size_send_L = 0; 
   
   if(my_pcol <= my_prow)  // if I am from the lower part of grid
   {
      curr_row_loc = 0;     // I will copy all my block-rows
      rows_in_buffer_L_my_initial = na_rows;
   }
   else
   {
      curr_row_loc = ceil((float)(((float)my_pcol - (float)my_prow)/(float)np_rows))*nblk; // I will skip some of my block-rows
      rows_in_buffer_L_my_initial = na_rows - curr_row_loc;   
   }
       
   for(i = 0; i < num_of_iters; i++)       // loop over my block-columns
   {
      curr_col_loc = i*nblk;      // local index of start of the current block-column 
      rows_in_block = na_rows - curr_row_loc;    // how many rows do I have in the lower part of the current block-column
      
      if ((na_cols - curr_col_loc) < nblk)
         cols_in_block = na_cols - curr_col_loc;     // how many columns do I have in the block-column
      else
         cols_in_block = nblk; 
      
      if((rows_in_block > 0)&&(cols_in_block > 0))
      {
         L_local_start = &L[curr_col_loc*na_rows + curr_row_loc];
         slacpy_("A", &rows_in_block, &cols_in_block, L_local_start, &na_rows, Buf_pos, &rows_in_block);     // copy lower part of block-column in the buffer with LDA = length of the lower part of block-column 
         Buf_pos = Buf_pos + rows_in_block*cols_in_block;
         Size_send_L = Size_send_L + rows_in_block*cols_in_block; 
         cols_in_buffer_L_my_initial = cols_in_buffer_L_my_initial + cols_in_block; 
      }
      curr_row_loc = curr_row_loc + ratio*nblk;
   }
   *Buf_pos = (float)cols_in_buffer_L_my_initial; // write number of the columns at the end of the buffer; we will need this for furhter multiplications on the other processors
   Size_send_L = Size_send_L + 1;
   
   // now we have the local buffer to send
   // find the lowest processor column among those who will send me
   proc_col_min = np_cols; 
   for(i = 0; i < ratio; i++)
   {
      from_where_to_receive_L = (my_pcol + my_prow + i*np_rows)%np_cols;
      if(from_where_to_receive_L < proc_col_min)
         proc_col_min = from_where_to_receive_L;
   }
   // do communications and form local buffers for calculations
   Size_receive_L = 0;       // size of the accumulated buffer
   cols_in_buffer_L = 0;     // number of columns in the accumulated buffer
   rows_in_buffer_L = 0;     // number of rows in the accumulated buffer
   for(i = 0; i < ratio; i++)
   {
      where_to_send_L = (my_pcol - my_prow - i*np_rows + np_cols)%np_cols;                
      from_where_to_receive_L = (my_pcol + my_prow + i*np_rows)%np_cols;
      
      // send and receive in the row_comm
      if(ratio != 1)   // if grid is not square
      {
         if(where_to_send_L != my_pcol)   // if I need to send and receive on this step
         {
            MPI_Sendrecv(Buf_to_send_L, Size_send_L, MPI_FLOAT, where_to_send_L, 0, Buf_L, Size_U_stored, MPI_FLOAT, from_where_to_receive_L, 0, row_comm, &status);
            MPI_Get_count(&status, MPI_FLOAT, &Size_receive_L_now);
            Size_receive_L = Size_receive_L + Size_receive_L_now - 1; // we need only number of elements, so exclude information about cols_in_buffer_L
            
            cols_in_buffer_L_now = Buf_L[Size_receive_L_now-1];
            cols_in_buffer_L = cols_in_buffer_L + cols_in_buffer_L_now; 
            
            // determine number of rows in the received buffer
            if(from_where_to_receive_L <= my_prow)  // if source is from the lower part of grid
            {
               rows_in_buffer_L_now = na_rows;
            }
            else
            {
               rows_in_buffer_L_now = na_rows - ceil((float)(((float)from_where_to_receive_L - (float)my_prow)/(float)np_rows))*nblk; // some of the block-rows have been skipped
            }
            if(rows_in_buffer_L < rows_in_buffer_L_now)
               rows_in_buffer_L = rows_in_buffer_L_now; 

            intNumber = from_where_to_receive_L/np_rows; // how many processors will send me blocks, such that they will be placed before the current blocks  
            if(proc_col_min <= my_prow)   // if among procs who will send me there is one with the full sets of block-rows in the lower part
               CopyTo = &Buf_to_receive_L[nblk*(na_rows*intNumber - nblk*(intNumber-1)*intNumber/2)];  // here I will copy to; formula based on arithm. progression
            else
               CopyTo = &Buf_to_receive_L[nblk*(na_rows*intNumber - nblk*intNumber*(intNumber+1)/2)];  // otherwise, the first block-column will be shorter by one block
            CopyFrom = Buf_L; 
         }
         else  // if I need to send to myself on this step, then I will copy from Buf_to_send_L to Buf_to_receive_L
         {
            cols_in_buffer_L_now = cols_in_buffer_L_my_initial;
            cols_in_buffer_L = cols_in_buffer_L + cols_in_buffer_L_now; 
            
            rows_in_buffer_L_now = rows_in_buffer_L_my_initial;
            if(rows_in_buffer_L < rows_in_buffer_L_now)
               rows_in_buffer_L = rows_in_buffer_L_now; 

            intNumber = my_pcol/np_rows; // how many processors will send me blocks, such that they will be placed before the current blocks  
            if(proc_col_min <= my_prow)   // if among procs who will send me there is one with the full sets of block-rows in the lower part
               CopyTo = &Buf_to_receive_L[nblk*(na_rows*intNumber - nblk*(intNumber-1)*intNumber/2)];  // here I will copy to; formula based on arithm. progression
            else
               CopyTo = &Buf_to_receive_L[nblk*(na_rows*intNumber - nblk*intNumber*(intNumber+1)/2)];  // otherwise, the first block-column will be shorter by one block
            CopyFrom = Buf_to_send_L;  

            Size_receive_L = Size_receive_L + Size_send_L - 1;
         }
            
         // copy by block-columns
         intNumber = ceil((float)cols_in_buffer_L_now/(float)nblk);  // how many block-columns I have received on this iteration
         rows_in_block = rows_in_buffer_L_now; 
         for(j = 0; j < intNumber; j++)
         {
            if((j+1)*nblk < cols_in_buffer_L_now)
               cols_in_block = nblk; 
            else
               cols_in_block = cols_in_buffer_L_now - j*nblk;
               
            slacpy_("A", &rows_in_block, &cols_in_block, CopyFrom, &rows_in_block, CopyTo, &rows_in_block);

            CopyFrom = CopyFrom + rows_in_block*cols_in_block; 
            CopyTo = CopyTo + nblk*(ratio*rows_in_block - nblk*(ratio-1)*ratio/2);  // I need to leave place for ratio block-columns of the other procs. of the lengths rows_in_block, (rows_in_block-nblk), (rows_in_block-2*nblk) and so on
            rows_in_block = rows_in_block - ratio*nblk;     // number of rows in the next block-columns
         }
      }
      else    // if grid is square
      {
         if(my_prow > 0)
         {
            MPI_Sendrecv(Buf_to_send_L, Size_send_L, MPI_FLOAT, where_to_send_L, 0, Buf_to_receive_L, Size_U_stored, MPI_FLOAT, from_where_to_receive_L, 0, row_comm, &status);
            MPI_Get_count(&status, MPI_FLOAT, &Size_receive_L);
            cols_in_buffer_L = (int)Buf_to_receive_L[Size_receive_L-1];
            if(from_where_to_receive_L <= my_prow)  // if source is from the lower part of grid
            {
               rows_in_buffer_L = na_rows;
            }
            else
            {
               rows_in_buffer_L = na_rows - ceil((float)(((float)from_where_to_receive_L - (float)my_prow)/(float)np_rows))*nblk; // some of the block-rows have been skipped
            }
         }
         else    // if my_prow == 0, then I have already everything in my Buf_to_receive_L buffer
         {
            Size_receive_L = Size_send_L;
            rows_in_buffer_L = rows_in_buffer_L_my_initial;
            cols_in_buffer_L = cols_in_buffer_L_my_initial;
         }
      }
   }
   if(ratio != 1)
   {
      Buf_to_receive_L[Size_receive_L] = cols_in_buffer_L;
      Buf_to_receive_L[Size_receive_L + 1] = rows_in_buffer_L;
      Size_receive_L = Size_receive_L + 2;
   }
   else
   {
      Buf_to_receive_L[Size_receive_L] = rows_in_buffer_L;
      Size_receive_L = Size_receive_L + 1;
   }

   ////////////////////////////////////////////////////////////// initial reordering of U //////////////////////////////////////////////////////////////////////////////////////////
   // form array to send by block-columns
   num_of_iters = ceil((float)na_cols/(float)nblk);             // number my of block-columns
   
   where_to_send_U = (my_prow - my_pcol + np_cols)%np_rows;                 // shift = my_pcol; we assume that np_cols%np_rows = 0
   from_where_to_receive_U = (my_pcol + my_prow)%np_rows;
   
   if(where_to_send_U == my_prow)    // if I will not need to send my local part of U, then copy my local data to the "received" buffer
      Buf_pos = Buf_to_receive_U;
   else
      Buf_pos = Buf_to_send_U;         // else form the array to send
   Size_send_U = 0;    // we already have 1 element in the buffer
   
   // find the first local block belonging to the upper part of matrix U
   if(my_pcol >= my_prow)  // if I am in the upper part of proc. grid
      curr_col_loc = 0;    // my first local block-column has block from the upper part of matrix
   else
      curr_col_loc = 1;   //ceil((float)(((float)my_prow - (float)my_pcol)/(float)np_cols)) always will give 1 since np_cols > np_rows 
      
   num_of_iters = num_of_iters - curr_col_loc;   // I will exclude the first <curr_col_loc> block-columns since they do not have blocks from the upper part of matrix U
   curr_col_loc = curr_col_loc*nblk;             // local index of the found block-column

   if(my_pcol >= my_prow )
      rows_in_block = ceil(((float)(my_pcol + 1) - (float)my_prow)/(float)np_rows)*nblk;
   else
      rows_in_block = ratio*nblk;
   for(i = 0; i < num_of_iters; i++)       // loop over my block-columns, which have blocks in the upepr part of U
   {      
      if(rows_in_block > na_rows)
         rows_in_block = na_rows; 

      if ((na_cols - curr_col_loc) < nblk)
         cols_in_block = na_cols - curr_col_loc;     // how many columns do I have in the current block-column
      else
         cols_in_block = nblk; 
      
      if((rows_in_block > 0)&&(cols_in_block > 0))
      {
         float_ptr = &U[curr_col_loc*na_rows];   // pointer to start of the current block-column to be copied to buffer
         slacpy_("A", &rows_in_block, &cols_in_block, float_ptr, &na_rows, Buf_pos, &rows_in_block);     // copy upper part of block-column in the buffer with LDA = length of the upper part of block-column 
         Buf_pos = Buf_pos + rows_in_block*cols_in_block;                         // go to the position where the next block-column will be copied                                             
         Size_send_U = Size_send_U + rows_in_block*cols_in_block; 
      }
      curr_col_loc = curr_col_loc + nblk;      // go to the next local block-column of my local array U 
      rows_in_block = rows_in_block + ratio*nblk;
   }
   rows_in_buffer = rows_in_block - ratio*nblk;    // remove redundant addition from the previous loop 
   *Buf_pos = (float)rows_in_buffer; // write number of the rows at the end of the buffer; we will need this for furhter multiplications on the other processors
   Size_send_U = Size_send_U + 1;
   
   //send and receive
   if(where_to_send_U != my_prow)
   {   
      // send and receive in the col_comm
      MPI_Sendrecv(Buf_to_send_U, Size_send_U, MPI_FLOAT, where_to_send_U, 0, Buf_to_receive_U, Size_U_stored, MPI_FLOAT, from_where_to_receive_U, 0, col_comm, &status); 
      MPI_Get_count(&status, MPI_FLOAT, &Size_receive_U); // find out how many elements I have received 
   }
   else // if I do not need to send 
      Size_receive_U = Size_send_U;         // how many rows I "have received"; the needed data I have already copied to the "receive" buffer
   
   //////////////////////////////////////////////////////////////////////// main loop ////////////////////////////////////////////////////////////////////////////////
   where_to_send_L = (my_pcol - 1 + np_cols)%np_cols;
   from_where_to_receive_L = (my_pcol + 1)%np_cols;
   where_to_send_U = (my_prow - 1 + np_rows)%np_rows;
   from_where_to_receive_U = (my_prow + 1)%np_rows;
  
   for(j = 1; j < np_rows; j++)
   {
      // at this moment I need to send to neighbour what I have in the "received" arrays; that is why exchange pointers of the "received" and "send" arrays
      float_ptr = Buf_to_send_L; 
      Buf_to_send_L = Buf_to_receive_L; 
      Buf_to_receive_L = float_ptr; 
      
      float_ptr = Buf_to_send_U; 
      Buf_to_send_U = Buf_to_receive_U; 
      Buf_to_receive_U = float_ptr;
        
      ///// shift for L ////////////////////////////////////////////////////////////
      Size_send_L = Size_receive_L; 
      MPI_Isend(Buf_to_send_L, Size_send_L, MPI_FLOAT, where_to_send_L, 0, row_comm, &request_L_Send); 
      MPI_Irecv(Buf_to_receive_L, ratio*Size_U_stored, MPI_FLOAT, from_where_to_receive_L, 0, row_comm, &request_L_Recv);
         
      ///// shift for U /////////////////////////////////////////////
      Size_send_U = Size_receive_U; 
      MPI_Isend(Buf_to_send_U, Size_send_U, MPI_FLOAT, where_to_send_U, 0, col_comm, &request_U_Send); 
      MPI_Irecv(Buf_to_receive_U, Size_U_stored, MPI_FLOAT, from_where_to_receive_U, 0, col_comm, &request_U_Recv); 
      
      ///// multiplication ////////////////////////////////////////////////////////////////////////////////////////////
      rows_in_buffer_U = (int)Buf_to_send_U[Size_receive_U-1];
      row_of_origin_U = (my_pcol + my_prow + np_cols + j - 1)%np_rows;
      if(my_pcol >= row_of_origin_U)
         cols_in_buffer_U = na_cols;
      else
         cols_in_buffer_U = na_cols - nblk;
      
      cols_in_buffer_L = (int)Buf_to_send_L[Size_receive_L-2];
      rows_in_buffer_L = (int)Buf_to_send_L[Size_receive_L-1];
      // find the minimal pcol among those who have sent L for this iteration
      col_of_origin_L = np_cols; 
      for(i = 0; i < ratio; i++)
      {
         intNumber = (my_pcol + my_prow + i*np_rows + np_cols + j - 1)%np_cols;
         if(intNumber < col_of_origin_L)
            col_of_origin_L = intNumber;
      }
      
      ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
      // find block-column of the result to start update with
      if (my_pcol >= row_of_origin_U)   // if origin of U is from the upper part 
         curr_col_loc_res = 0;          // then I update all columns of Result    
      else
         curr_col_loc_res = nblk;       // the first block column of U corresponds to my second one and I do not need to update the first block-column
      
      num_of_blocks_in_U_buffer = ceil((float)((float)cols_in_buffer_U/(float)nblk)); 
      if(my_pcol >= row_of_origin_U)    // if origin of U is from the upper part
         rows_in_block_U = ceil(((float)(my_pcol + 1) - (float)row_of_origin_U)/(float)np_rows)*nblk;  // blocks in the first block-column of U buffer
      else
         rows_in_block_U = ratio*nblk;
      
      U_local_start = &Buf_to_send_U[0];
      
      for (i = 0; i < num_of_blocks_in_U_buffer; i++)
      { 
         // find block-row of the result to start update with; we need to update only lower triangular part of result
         curr_col_glob_res = np_cols*nblk*(curr_col_loc_res/nblk) + curr_col_loc_res%nblk + ((np_cols+my_pcol)%np_cols)*nblk;   // global index of the first column to be updated
         // now we need to find the smallest my local row index, such that the corresponding global index is larger of equal to <curr_col_glob_res>
         Nb = curr_col_glob_res/nblk;    // how many global block-rows are before the needed one
         owner = Nb%np_rows;             // proc. row index of the owner of row with the global index equal to <curr_col_glob_res> (it is not necessarily me)
         curr_row_loc_res = (Nb/np_rows)*nblk; 
         if(my_prow < owner)
            curr_row_loc_res = curr_row_loc_res + nblk; 
      
         curr_row_loc_L = curr_row_loc_res;     // it is impossible, that both col_of_origin_L and row_of_origin_U are from upper part
         if(col_of_origin_L > my_prow)
            curr_row_loc_L = curr_row_loc_L - nblk;  
        
         rows_in_block = rows_in_buffer_L - curr_row_loc_L;    // rows in current block of L 
              
         curr_col_loc_U = i*nblk;   // local index in the buffer U of the current column
      
         if((curr_col_loc_U + nblk) <= cols_in_buffer_U)
            cols_in_block = nblk;      // number columns in block of U which will take part in this calculation
         else
            cols_in_block = cols_in_buffer_U - curr_col_loc_U; 
      
         if(rows_in_block_U > rows_in_buffer_U)
            rows_in_block_U = rows_in_buffer_U;     // rows in current column of U; also a leading dimension for U
 
         L_local_index = curr_row_loc_L; 
         L_local_start = &Buf_to_send_L[L_local_index]; 
         Res_ptr = &Res[curr_col_loc_res*na_rows + curr_row_loc_res];

         LDA_L = rows_in_buffer_L; 
         LDA_L_new = LDA_L; 
         if ((rows_in_block > 0)&&(cols_in_block > 0))
         {
            U_local_start_curr = U_local_start; 

            // loop over block-columns of the "active" part of L buffer
            for (ii = 0; ii < ceil((float)rows_in_block_U/(float)nblk); ii++)
            {
               if((ii+1)*nblk <= cols_in_buffer_L)
                  rows_in_block_U_curr = nblk; 
               else
                  rows_in_block_U_curr = cols_in_buffer_L - ii*nblk;  

               if((j == 1)&&(ii == 0))
                  sgemm_("N", "N", &rows_in_block, &cols_in_block, &rows_in_block_U_curr, &done, L_local_start, &LDA_L, U_local_start_curr, &rows_in_block_U, &dzero, Res_ptr, &na_rows); 
               else 
                  sgemm_("N", "N", &rows_in_block, &cols_in_block, &rows_in_block_U_curr, &done, L_local_start, &LDA_L, U_local_start_curr, &rows_in_block_U, &done, Res_ptr, &na_rows);

               LDA_L_new = LDA_L_new - nblk;
      
               U_local_start_curr = U_local_start_curr + rows_in_block_U_curr; 
               L_local_index = L_local_index - LDA_L + LDA_L*nblk + LDA_L_new; 
               L_local_start = &Buf_to_send_L[L_local_index];
               LDA_L = LDA_L_new; 
            }
         }
      
         U_local_start = U_local_start + rows_in_block_U*cols_in_block;
         curr_col_loc_res = curr_col_loc_res + nblk; 
         rows_in_block_U = rows_in_block_U + ratio*nblk;
      }    
      
      MPI_Wait(&request_L_Send, &status);
      MPI_Wait(&request_L_Recv, &status);
      MPI_Get_count(&status, MPI_FLOAT, &Size_receive_L); // find out how many elements I have received 
      
      MPI_Wait(&request_U_Send, &status);
      MPI_Wait(&request_U_Recv, &status);
      MPI_Get_count(&status, MPI_FLOAT, &Size_receive_U); // find out how many elements I have received  
   }
   
   /////// do the last multiplication //////////////
   rows_in_buffer_U = (int)Buf_to_receive_U[Size_receive_U-1];
   row_of_origin_U = (my_pcol + my_prow + np_cols + j - 1)%np_rows;     
   if(my_pcol >= row_of_origin_U)
      cols_in_buffer_U = na_cols;
   else
      cols_in_buffer_U = na_cols - nblk;
      
   cols_in_buffer_L = (int)Buf_to_receive_L[Size_receive_L-2];
   rows_in_buffer_L = (int)Buf_to_receive_L[Size_receive_L-1];
   // find the minimal pcol among those who have sent L for this iteration
   col_of_origin_L = np_cols; 
   for(i = 0; i < ratio; i++)
   {
      intNumber = (my_pcol + my_prow + i*np_rows + np_cols + np_rows - 1)%np_cols;
      if(intNumber < col_of_origin_L)
         col_of_origin_L = intNumber;
   }
   
   // find block-column of the result to start update with
   if (my_pcol >= row_of_origin_U)   // if origin of U is from the upper part 
      curr_col_loc_res = 0;          // then I update all columns of Result    
   else
      curr_col_loc_res = nblk;       // the first block column of U corresponds to my second one and I do not need to update the first block-column
      
   num_of_blocks_in_U_buffer = ceil((float)((float)cols_in_buffer_U/(float)nblk));
   if(my_pcol >= row_of_origin_U)    // if origin of U is from the upper part
      rows_in_block_U = ceil(((float)(my_pcol + 1) - (float)row_of_origin_U)/(float)np_rows)*nblk;  // blocks in the first block-column of U buffer
   else
      rows_in_block_U = ratio*nblk;
      
   U_local_start = &Buf_to_receive_U[0];
      
   for (i = 0; i < num_of_blocks_in_U_buffer; i++)
   { 
      // find block-row of the result to start update with; we need to update only lower triangular part of result
      curr_col_glob_res = np_cols*nblk*(curr_col_loc_res/nblk) + curr_col_loc_res%nblk + ((np_cols+my_pcol)%np_cols)*nblk;   // global index of the first column to be updated
      // now we need to find the smallest my local row index, such that the corresponding global index is larger of equal to <curr_col_glob_res>
      Nb = curr_col_glob_res/nblk;    // how many global block-rows are before the needed one
      owner = Nb%np_rows;             // proc. row index of the owner of row with the global index equal to <curr_col_glob_res> (it is not necessarily me)
      curr_row_loc_res = (Nb/np_rows)*nblk; 
      if(my_prow < owner)
         curr_row_loc_res = curr_row_loc_res + nblk; 
      
      curr_row_loc_L = curr_row_loc_res;     // it is impossible, that both col_of_origin_L and row_of_origin_U are from upper part
      if(col_of_origin_L > my_prow)
         curr_row_loc_L = curr_row_loc_L - nblk;
      
      rows_in_block = rows_in_buffer_L - curr_row_loc_L;    //rows in current block of  
              
      curr_col_loc_U = i*nblk;   // local index in the buffer U of the current column
      
      if((curr_col_loc_U + nblk) <= cols_in_buffer_U)
         cols_in_block = nblk;      // number columns in block of U which will take part in this calculation
      else
         cols_in_block = cols_in_buffer_U - curr_col_loc_U; 
      
      if(rows_in_block_U > rows_in_buffer_U)
         rows_in_block_U = rows_in_buffer_U; 
 
      L_local_index = curr_row_loc_L; 
      L_local_start = &Buf_to_receive_L[L_local_index]; 
      Res_ptr = &Res[curr_col_loc_res*na_rows + curr_row_loc_res];
      LDA_L = rows_in_buffer_L; 
      LDA_L_new = LDA_L; 
      if ((rows_in_block > 0) &&(cols_in_block > 0))
      {
         U_local_start_curr = U_local_start; 
         
         // loop over block-columns of the "active" part of L buffer
         for (ii = 0; ii < ceil((float)rows_in_block_U/(float)nblk); ii++)
         {
            if((ii+1)*nblk <= cols_in_buffer_L)
               rows_in_block_U_curr = nblk; 
            else
               rows_in_block_U_curr = cols_in_buffer_L - ii*nblk;  

            if((j == 1)&&(ii == 0))
               sgemm_("N", "N", &rows_in_block, &cols_in_block, &rows_in_block_U_curr, &done, L_local_start, &LDA_L, U_local_start_curr, &rows_in_block_U, &dzero, Res_ptr, &na_rows); 
            else 
               sgemm_("N", "N", &rows_in_block, &cols_in_block, &rows_in_block_U_curr, &done, L_local_start, &LDA_L, U_local_start_curr, &rows_in_block_U, &done, Res_ptr, &na_rows);

            LDA_L_new = LDA_L_new - nblk;
              
            U_local_start_curr = U_local_start_curr + rows_in_block_U_curr; 
            L_local_index = L_local_index - (LDA_L - rows_in_block) + LDA_L*nblk + LDA_L_new - rows_in_block; 
            L_local_start = &Buf_to_receive_L[L_local_index];
            LDA_L = LDA_L_new; 
         }
      }
      
      U_local_start = U_local_start + rows_in_block_U*cols_in_block;
      curr_col_loc_res = curr_col_loc_res + nblk; 
      rows_in_block_U = rows_in_block_U + ratio*nblk;
   }
      
   free(Buf_to_send_L);
   free(Buf_to_receive_L);
   free(Buf_to_send_U);
   free(Buf_to_receive_U);
   if(ratio != 1)
      free(Buf_L); 
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////// Start of main program //////////////////////////////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char** argv) {
   int myid;
   int nprocs;
#ifndef WITH_MPI
   int MPI_COMM_WORLD;
#endif
   int my_mpi_comm_world, mpi_comm_rows, mpi_comm_cols;
   int na, nblk, np_cols, np_rows, np_colsStart, my_blacs_ctxt, nprow, npcol, my_prow, my_pcol;

   int mpierr;

   int info, i, j, na_rows, na_cols; 
   
   float startVal;

   float *a, *b,  *c, *a_copy, *b_copy, *c1, *c2, *a_t, *work;
   int *a_desc, *b_desc, *c_desc; 
      
   float value, diff, diffSum; 
   
   float done = 1.0; 
   float dMinusOne = -1.0; 
   int one = 1; 
   float dzero = 0.0; 
   int zero = 0;
   double startTime, endTime, localTime, avTime, maxTime;

   int reallevel;
   
#ifdef WITH_MPI
   MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &reallevel);
   MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);
   if(myid == 0)
     printf("Threading level = %d \n", reallevel);
#else
   nprocs = 1;
   myid=0;
   MPI_COMM_WORLD=1;
#endif
   
   na = atoi(argv[1]);
   nblk = atoi(argv[2]);

   ///////////// procs grids and communicators ///////////////////////////////////////////////
   if (myid == 0)
     printf("Matrix size: %d, blocksize: %d\n\n", na, nblk);

   startVal = sqrt((float) nprocs);
   np_colsStart = (int) round(startVal);
   for (np_rows=np_colsStart;np_rows>1;np_rows--){
     if (nprocs %np_rows ==0)
     break;
     }
   np_cols = nprocs/np_rows;
   if (myid == 0)
     printf("Number of processor rows %d, cols %d, total %d \n\n",np_rows,np_cols,nprocs);
   
   /* set up blacs */
   /* convert communicators before */
#ifdef WITH_MPI
   my_mpi_comm_world = MPI_Comm_c2f(MPI_COMM_WORLD);
#else
  my_mpi_comm_world = 1;
#endif
set_up_blacsgrid_f1(my_mpi_comm_world, &my_blacs_ctxt, &np_rows, &np_cols, &nprow, &npcol, &my_prow, &my_pcol);

   /* get the ELPA row and col communicators. */
   /* These are NOT usable in C without calling the MPI_Comm_f2c function on them !! */
#ifdef WITH_MPI
   my_mpi_comm_world = MPI_Comm_c2f(MPI_COMM_WORLD);
#endif
   mpierr = elpa_get_communicators(my_mpi_comm_world, my_prow, my_pcol, &mpi_comm_rows, &mpi_comm_cols);

   ////////////////////// descriptors area ///////////////////////////////////////////////
   a_desc = malloc(9*sizeof(int));
   b_desc = malloc(9*sizeof(int));
   c_desc = malloc(9*sizeof(int));
   
   na_rows = numroc_(&na, &nblk, &my_prow, &zero, &np_rows);
   na_cols = numroc_(&na, &nblk, &my_pcol, &zero, &np_cols);
   
   descinit_(a_desc, &na, &na, &nblk, &nblk, &zero, &zero, &my_blacs_ctxt, &na_rows, &info);
   descinit_(b_desc, &na, &na, &nblk, &nblk, &zero, &zero, &my_blacs_ctxt, &na_rows, &info);
   descinit_(c_desc, &na, &na, &nblk, &nblk, &zero, &zero, &my_blacs_ctxt, &na_rows, &info);
   
   /////////////////////////memory allocation area//////////////////////////////////////////////////////////////
   a  = malloc(na_rows*na_cols*sizeof(float));
   b  = malloc(na_rows*na_cols*sizeof(float));
   c = malloc(na_rows*na_cols*sizeof(float));
   a_copy  = malloc(na_rows*na_cols*sizeof(float));
   b_copy  = malloc(na_rows*na_cols*sizeof(float));
   c1 = malloc(na_rows*na_cols*sizeof(float));
   c2 = malloc(na_rows*na_cols*sizeof(float));
   a_t  = malloc(na_rows*na_cols*sizeof(float));
   work = malloc(na_cols*na_rows*sizeof(float));

   //////////////////////////generate matrices//////////////////////////////////////////////////////////////////////////////
   int i_global, j_global;
   for(i = 0; i < na_rows; i++)
      for(j = 0; j < na_cols; j++)
      {
         i_global = np_rows*nblk*(i/nblk) + i%nblk + ((np_rows+my_prow)%np_rows)*nblk + 1; 
         j_global = np_cols*nblk*(j/nblk) + j%nblk + ((np_cols+my_pcol)%np_cols)*nblk + 1;
         a[i + j*na_rows] = (float)cos(i_global)*cos(j_global) + (float)sin(i_global)*sin(j_global);
         if(i_global == j_global)
            a[i + j*na_rows] = a[i + j*na_rows] + (float)(i_global + j_global)/na;
         b[i + j*na_rows] = (float)sin(i_global)*(float)sin(j_global);   
         if(i_global == j_global)
            b[i + j*na_rows] = b[i + j*na_rows] + 1;  
      }
   
   /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
   for(i = 0; i < na_rows*na_cols; i++)
      c[i] = 0;
   for(i = 0; i < na_rows*na_cols; i++)
      c2[i] = 0;
   
   elpa_cholesky_real_single(na, b, na_rows, nblk, na_cols, mpi_comm_rows, mpi_comm_cols, 1);   // now b = U
   for(i = 0; i < na_rows; i++)
      for(j = 0; j < na_cols; j++)
      {
         i_global = np_rows*nblk*(i/nblk) + i%nblk + ((np_rows+my_prow)%np_rows)*nblk + 1; 
         j_global = np_cols*nblk*(j/nblk) + j%nblk + ((np_cols+my_pcol)%np_cols)*nblk + 1;
         if(i_global > j_global)
            b[i + j*na_rows] = 0;
         if(i_global < j_global)
            a[i + j*na_rows] = 0;
      }
     
   //make copies of a and b
   for(i = 0; i < na_rows*na_cols; i++)
   {
      a_copy[i] = a[i];
      b_copy[i] = b[i];
   }      
   
   for(i = 0; i < na_rows*na_cols; i++)
      c1[i] = a_copy[i];
   
   if(myid == 0)
      printf("\n\nTest1 ___________________________________________________________________ \n");
   ///// test Cannon's ///////////////////////////////////////////////////////////////////////////////
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   s_Cannons_Mult2(a, b, np_rows, np_cols, my_prow, my_pcol, a_desc, c, mpi_comm_cols, mpi_comm_rows);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   
   if(myid == 0)
      printf("\n Cannon's algorithm. 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);
   
   ///// test PSTRMM /////////////////////////////////////////////////////////////////////////////////////
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   pstrmm_("R", "U", "N", "N", &na, &na, &done, b_copy, &one, &one, b_desc, c1, &one, &one, c_desc);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("\n PSTRMM from ScaLAPACK. 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);
   
   ///// test ELPA ///////////////////////////////////////////////////////////////////////////////////////////
   pstran_(&na, &na, &done, a_copy, &one, &one, a_desc, &dzero, a_t, &one, &one, a_desc);
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   elpa_mult_at_b_real_single('U', 'U', na, na, b, na_rows, na_cols, a_t, na_rows, na_cols, nblk, mpi_comm_rows, mpi_comm_cols, work, na_rows, na_cols);   // work has upper part of b(H)*A(H)
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("\n elpa_mult_at_b_real_single(U,U). 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);
   
   pstran_(&na, &na, &done, work, &one, &one, a_desc, &dzero, c2, &one, &one, a_desc);   // c2 has lower part of A*b
      
   for(i = 0; i < na_rows; i++)
      for(j = 0; j < na_cols; j++)
      {
         i_global = np_rows*nblk*(i/nblk) + i%nblk + ((np_rows+my_prow)%np_rows)*nblk + 1; 
         j_global = np_cols*nblk*(j/nblk) + j%nblk + ((np_cols+my_pcol)%np_cols)*nblk + 1;
         if(i_global < j_global)
         {
            c[i + j*na_rows] = 0; 
            c1[i + j*na_rows] = 0; 
            c2[i + j*na_rows] = 0;
         }        
      }
   
   /////check /////////////////////////////////////////////////////////////////////////////////////////////////
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c1[i]-c[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between Cannon's and PSTRMM = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c2[i]-c[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between Cannon's and ELPA = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c2[i]-c1[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between PSTRMM and ELPA = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   if(myid == 0)
      printf("\n\nTest2 ___________________________________________________________________ \n");
   
   for(i = 0; i < na_rows*na_cols; i++)
      c[i] = 0;
   for(i = 0; i < na_rows*na_cols; i++)
      c2[i] = 0;
   for(i = 0; i < na_rows*na_cols; i++)
      c1[i] = a_copy[i];
   
   ///// test PSTRMM /////////////////////////////////////////////////////////////////////////////////////
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   pstrmm_("R", "U", "N", "N", &na, &na, &done, b_copy, &one, &one, b_desc, c1, &one, &one, c_desc);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("\n PSTRMM from ScaLAPACK. 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);
   
   ///// test Cannon's ///////////////////////////////////////////////////////////////////////////////
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   s_Cannons_Mult2(a, b, np_rows, np_cols, my_prow, my_pcol, a_desc, c, mpi_comm_cols, mpi_comm_rows);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   
   if(myid == 0)
      printf("Cannon's algorithm. 0 proc in: %lf, average over procs = %lf, max = %lf\n", localTime, avTime, maxTime);
   
   ///// test ELPA ///////////////////////////////////////////////////////////////////////////////////////////
   pstran_(&na, &na, &done, a_copy, &one, &one, a_desc, &dzero, a_t, &one, &one, a_desc);
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   elpa_mult_at_b_real_single('U', 'U', na, na, b, na_rows, na_cols, a_t, na_rows, na_cols, nblk, mpi_comm_rows, mpi_comm_cols, work, na_rows, na_cols);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("\n elpa_mult_at_b_real_single(U,U). 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);
   
   pstran_(&na, &na, &done, work, &one, &one, a_desc, &dzero, c2, &one, &one, a_desc);
      
   for(i = 0; i < na_rows; i++)
      for(j = 0; j < na_cols; j++)
      {
         i_global = np_rows*nblk*(i/nblk) + i%nblk + ((np_rows+my_prow)%np_rows)*nblk + 1; 
         j_global = np_cols*nblk*(j/nblk) + j%nblk + ((np_cols+my_pcol)%np_cols)*nblk + 1;
         if(i_global < j_global)
         {
            c[i + j*na_rows] = 0; 
            c1[i + j*na_rows] = 0; 
            c2[i + j*na_rows] = 0;
         }        
      }
   
   /////check /////////////////////////////////////////////////////////////////////////////////////////////////
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c1[i]-c[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between Cannon's and PSTRMM = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c2[i]-c[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between Cannon's and ELPA = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c2[i]-c1[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between PSTRMM and ELPA = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   if(myid == 0)
      printf("\n\nTest3 ___________________________________________________________________ \n");
   
   for(i = 0; i < na_rows*na_cols; i++)
      c[i] = 0;
   for(i = 0; i < na_rows*na_cols; i++)
      c2[i] = 0;
   for(i = 0; i < na_rows*na_cols; i++)
      c1[i] = a_copy[i];
   
   ///// test PSTRMM /////////////////////////////////////////////////////////////////////////////////////
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   pstrmm_("R", "U", "N", "N", &na, &na, &done, b_copy, &one, &one, b_desc, c1, &one, &one, c_desc);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("\n PSTRMM from ScaLAPACK. 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);

   ///// test ELPA ///////////////////////////////////////////////////////////////////////////////////////////
   pstran_(&na, &na, &done, a_copy, &one, &one, a_desc, &dzero, a_t, &one, &one, a_desc);
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   elpa_mult_at_b_real_single('U', 'U', na, na, b, na_rows, na_cols, a_t, na_rows, na_cols, nblk, mpi_comm_rows, mpi_comm_cols, work, na_rows, na_cols);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("\n elpa_mult_at_b_real_single(U,U). 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);

   ///// test Cannon's ///////////////////////////////////////////////////////////////////////////////
   for(i = 0; i < na_rows*na_cols; i++)
     c[i] = 0;
   MPI_Barrier(MPI_COMM_WORLD);
   startTime = MPI_Wtime();
   s_Cannons_Mult2(a, b, np_rows, np_cols, my_prow, my_pcol, a_desc, c, mpi_comm_cols, mpi_comm_rows);
   MPI_Barrier(MPI_COMM_WORLD);
   endTime = MPI_Wtime();
   localTime = endTime - startTime; 
   MPI_Reduce(&localTime, &avTime, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   avTime = avTime/nprocs;
   MPI_Reduce(&localTime, &maxTime, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
   
   if(myid == 0)
      printf("\n Cannon's algorithm. 0 proc in: %lf, average over procs = %lf, max = %lf\n\n", localTime, avTime, maxTime);
   
   pstran_(&na, &na, &done, work, &one, &one, a_desc, &dzero, c2, &one, &one, a_desc);
     
   for(i = 0; i < na_rows; i++)
      for(j = 0; j < na_cols; j++)
      {
         i_global = np_rows*nblk*(i/nblk) + i%nblk + ((np_rows+my_prow)%np_rows)*nblk + 1; 
         j_global = np_cols*nblk*(j/nblk) + j%nblk + ((np_cols+my_pcol)%np_cols)*nblk + 1;
         if(i_global < j_global)
         {
            c[i + j*na_rows] = 0; 
            c1[i + j*na_rows] = 0; 
            c2[i + j*na_rows] = 0;
         }        
      }
   
   /////check /////////////////////////////////////////////////////////////////////////////////////////////////
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c1[i]-c[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between Cannon's and PSTRMM = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c2[i]-c[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between Cannon's and ELPA = %.15e, average = %.15e\n", diffSum, diffSum/(na*na));
   
   diff = 0;
   diffSum = 0; 
   for(i = 0; i < na_rows*na_cols; i++)
      diff = diff + fabsf(c2[i]-c1[i]);
   MPI_Reduce(&diff, &diffSum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
   if(myid == 0)
      printf("Summed difference between PSTRMM and ELPA = %.15e, average = %.15e\n", diffSum, diffSum/(na*na)); 

////////////////////////////////////////////////////////////////////////////////////// free memory ///////////////////////////////////////////////////
   free(a);
   free(a_desc);
   free(b);
   free(b_desc);
   free(c); 
   free(c_desc);
   free(work);
   free(a_copy);
   free(b_copy);
   free(c1);
   free(c2);
   free(a_t);
 
#ifdef WITH_MPI
   MPI_Finalize();
#endif
   return 0;
1052
}