! This file is part of ELPA. ! ! The ELPA library was originally created by the ELPA consortium, ! consisting of the following organizations: ! ! - Max Planck Computing and Data Facility (MPCDF), formerly known as ! Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG), ! - Bergische Universität Wuppertal, Lehrstuhl für angewandte ! Informatik, ! - Technische Universität München, Lehrstuhl für Informatik mit ! Schwerpunkt Wissenschaftliches Rechnen , ! - Fritz-Haber-Institut, Berlin, Abt. Theorie, ! - Max-Plack-Institut für Mathematik in den Naturwissenschaften, ! Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition, ! and ! - IBM Deutschland GmbH ! ! ! More information can be found here: ! http://elpa.mpcdf.mpg.de/ ! ! ELPA is free software: you can redistribute it and/or modify ! it under the terms of the version 3 of the license of the ! GNU Lesser General Public License as published by the Free ! Software Foundation. ! ! ELPA is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU Lesser General Public License for more details. ! ! You should have received a copy of the GNU Lesser General Public License ! along with ELPA. If not, see ! ! ELPA reflects a substantial effort on the part of the original ! ELPA consortium, and we ask you to respect the spirit of the ! license that we chose: i.e., please contribute any changes you ! may have back to the original ELPA library distribution, and keep ! any derivatives of ELPA under the same license that we chose for ! the original distribution, the GNU Lesser General Public License. ! ! #include "config-f90.h" !> !> Fortran test programm to demonstrates the use of !> ELPA 1 complex case library. !> If "HAVE_REDIRECT" was defined at build time !> the stdout and stderr output of each MPI task !> can be redirected to files if the environment !> variable "REDIRECT_ELPA_TEST_OUTPUT" is set !> to "true". !> !> By calling executable [arg1] [arg2] [arg3] [arg4] !> one can define the size (arg1), the number of !> Eigenvectors to compute (arg2), and the blocking (arg3). !> If these values are not set default values (4000, 1500, 16) !> are choosen. !> If these values are set the 4th argument can be !> "output", which specifies that the EV's are written to !> an ascii file. !> program test_complex_gpu_version_single_precision !------------------------------------------------------------------------------- ! Standard eigenvalue problem - COMPLEX version ! ! This program demonstrates the use of the ELPA module ! together with standard scalapack routines ! ! Copyright of the original code rests with the authors inside the ELPA ! consortium. The copyright of any additional modifications shall rest ! with their original authors, but shall adhere to the licensing terms ! distributed along with the original code in the file "COPYING". !------------------------------------------------------------------------------- use elpa1 use elpa_utilities, only : error_unit use test_util use test_read_input_parameters use test_check_correctness use test_setup_mpi use test_blacs_infrastructure use test_prepare_matrix #ifdef HAVE_REDIRECT use test_redirect #endif use test_output_type implicit none !------------------------------------------------------------------------------- ! Please set system size parameters below! ! na: System size ! nev: Number of eigenvectors to be calculated ! nblk: Blocking factor in block cyclic distribution !------------------------------------------------------------------------------- integer(kind=ik) :: nblk integer(kind=ik) :: na, nev integer(kind=ik) :: np_rows, np_cols, na_rows, na_cols integer(kind=ik) :: myid, nprocs, my_prow, my_pcol, mpi_comm_rows, mpi_comm_cols integer(kind=ik) :: i, mpierr, my_blacs_ctxt, sc_desc(9), info, nprow, npcol real(kind=rk4), allocatable :: ev(:) complex(kind=ck4), allocatable :: a(:,:), z(:,:), as(:,:) complex(kind=ck4), parameter :: CZERO = (0._rk4,0.0_rk4), CONE = (1._rk4,0._rk4) integer(kind=ik) :: STATUS #ifdef WITH_OPENMP integer(kind=ik) :: omp_get_max_threads, required_mpi_thread_level, provided_mpi_thread_level #endif type(output_t) :: write_to_file logical :: success character(len=8) :: task_suffix integer(kind=ik) :: j logical :: useGPU #undef DOUBLE_PRECISION_COMPLEX success = .true. ! read input parameters if they are provided call read_input_parameters(na, nev, nblk, write_to_file) !------------------------------------------------------------------------------- ! MPI Initialization call setup_mpi(myid, nprocs) STATUS = 0 #define COMPLEXCASE #define ELPA1 #include "../../elpa_print_headers.X90" !------------------------------------------------------------------------------- ! Selection of number of processor rows/columns ! We try to set up the grid square-like, i.e. start the search for possible ! divisors of nprocs with a number next to the square root of nprocs ! and decrement it until a divisor is found. do np_cols = NINT(SQRT(REAL(nprocs))),2,-1 if(mod(nprocs,np_cols) == 0 ) exit enddo ! at the end of the above loop, nprocs is always divisible by np_cols np_rows = nprocs/np_cols if(myid==0) then print * print '(a)','Standard eigenvalue problem - COMPLEX version' print * print '((a,i0))', 'Matrix size: ', na print '((a,i0))', 'Num eigenvectors: ', nev print '((a,i0))', 'Blocksize: ', nblk print '((a,i0))', 'Num MPI proc: ', nprocs print '((a))', 'Using gpu: YES' print '((a))', 'Number type: complex' print '((a))', 'Number precision: single' print * print '(3(a,i0))','Number of processor rows=',np_rows,', cols=',np_cols,', total=',nprocs print * endif !------------------------------------------------------------------------------- ! Set up BLACS context and MPI communicators ! ! The BLACS context is only necessary for using Scalapack. ! ! For ELPA, the MPI communicators along rows/cols are sufficient, ! and the grid setup may be done in an arbitrary way as long as it is ! consistent (i.e. 0<=my_prow