AC_PREREQ([2.69]) # The version is set in elpa.spec, to have a single point of reference AC_INIT([elpa],m4_esyscmd_s([awk '/^ *Version:/ {print $2;}' elpa.spec]), [elpa-library@mpcdf.mpg.de]) AC_SUBST([PACKAGE_VERSION]) AC_CONFIG_SRCDIR([src/elpa1.F90]) AM_INIT_AUTOMAKE([foreign -Wall subdir-objects]) # Without this, automake tries to be smart and rebuilt # the autoconf generated files such as configure, aclocal.m4, etc., # in case the timestamps of files such as configure.ac are newer # # This only makes trouble for end users with out-of-date autoconf versions # that cannot produce these files AM_MAINTAINER_MODE([disable]) AC_CONFIG_MACRO_DIR([m4]) AC_CONFIG_HEADERS([config.h]) AM_SILENT_RULES([yes]) # Set the libtool library version, see LIBRARY_INTERFACE # # See http://www.gnu.org/software/libtool/manual/html_node/Updating-version-info.html # # [c:r:a] # # c: The currently implement interface # r: The revision number of the current interface, that is the number # of released source-code changes for the current interface # a: The "age" is the number of interfaces prior to c that are also supported # by the current interface, as they are ABI compatible (e.g. only new symbols # were added by the new interface) # AC_SUBST([ELPA_SO_VERSION], [8:0:0]) # AX_CHECK_GNU_MAKE() if test x$_cv_gnu_make_command = x ; then AC_MSG_ERROR([Need GNU Make]) fi #AC_CHECK_PROG(CPP_FOUND,cpp,yes,no) #if test x"${CPP_FOUND}" = xno; then # AC_MSG_ERROR([no cpp found]) #fi # gnu-make fortran module dependencies m4_include([fdep/fortran_dependencies.m4]) FDEP_F90_GNU_MAKE_DEPS ### m4_include([m4/ax_elpa_openmp.m4]) AC_MSG_CHECKING(whether --enable-openmp is specified) AC_ARG_ENABLE([openmp], AS_HELP_STRING([--enable-openmp], [use OpenMP threading, default no.]), [], [enable_openmp=no]) AC_MSG_RESULT([${enable_openmp}]) AM_CONDITIONAL([WITH_OPENMP],[test x"$enable_openmp" = x"yes"]) if test x"${enable_openmp}" = x"yes"; then AC_DEFINE([WITH_OPENMP], [1], [use OpenMP threading]) fi dnl mpi AC_ARG_WITH(mpi, [AS_HELP_STRING([--with-mpi=[[yes|no]]], [compile with MPI. Default: yes])],,[with_mpi=yes]) AM_CONDITIONAL([WITH_MPI],[test x"$with_mpi" = x"yes"]) if test x"${with_mpi}" = x"yes"; then AC_DEFINE([WITH_MPI], [1], [use MPI]) fi # C AC_LANG([C]) AX_PROG_CC_MPI([test x"$with_mpi" = x"yes"],[found_mpi_c=yes],[found_mpi_c=no]) if test x"$with_mpi" = x"yes"; then if test x"$found_mpi_c" = x"no"; then AC_MSG_ERROR([Could not compile an MPI C program]) fi fi if test x"${enable_openmp}" = x"yes"; then AX_ELPA_OPENMP if test "$ac_cv_prog_cc_openmp" = unsupported; then AC_MSG_ERROR([Could not compile a C program with OpenMP, adjust CFLAGS]) fi CFLAGS="$OPENMP_CFLAGS $CFLAGS" fi AC_PROG_INSTALL AM_PROG_AR AM_PROG_AS AM_PROG_CC_C_O # Fortran dnl check whether single precision is requested AC_MSG_CHECKING(whether ELPA library should contain also single precision functions) AC_ARG_ENABLE(single-precision,[AS_HELP_STRING([--enable-single-precision], [build with single precision])], want_single_precision="yes", want_single_precision="no") AC_MSG_RESULT([${want_single_precision}]) AC_LANG([Fortran]) m4_include([m4/ax_prog_fc_mpi.m4]) AX_PROG_FC_MPI([test x"$with_mpi" = x"yes"],[found_mpi_f=yes],[found_mpi_f=no]) if test x"$with_mpi" = x"yes"; then if test x"$found_mpi_f" = x"no"; then AC_MSG_ERROR([Could not compile an MPI Fortran program]) fi fi if test x"${enable_openmp}" = x"yes"; then AX_ELPA_OPENMP if test "$ac_cv_prog_fc_openmp" = unsupported; then AC_MSG_ERROR([Could not compile a Fortran program with OpenMP, adjust FCFLAGS]) fi FCFLAGS="$OPENMP_FCFLAGS $FCFLAGS" fi dnl check which MPI binray invokes a MPI job if test x"$with_mpi" = x"yes"; then AC_CHECK_PROGS([MPI_BINARY], [mpiexec.hydra mpiexec mpirun poe runjob srun], [no]) if test x"$MPI_BINARY" = x"no"; then AC_MSG_ERROR([Could not find either of the MPI binaries: mpiexec.hydra, mpiexec, mpirun, poe, runjob, srun]) fi fi ## C++ #AC_LANG([C++]) #AC_PROG_CXX # #if test x"${enable_openmp}" = x"yes"; then # AX_ELPA_OPENMP # if test "$ac_cv_prog_cxx_openmp" = unsupported; then # AC_MSG_ERROR([Could not compile a C++ program with OpenMP, adjust CXXFLAGS]) # fi # CXXFLAGS="$OPENMP_CXXFLAGS $CXXFLAGS" #fi dnl variables needed for the tests dnl do NOT remove any variables here, until dnl 1. you know 100% what you are doing dnl 2. you tested ALL configure functionality afterwards dnl Otherwise, you most likely break some functionality dnl as default always define the generic kernels to be build dnl this is only unset if gpu_support_only is defined, or dnl other specific real/complex kernels are wanted install_real_generic=yes install_real_generic_simple=yes install_complex_generic=yes install_complex_generic_simple=yes #want_avx=yes #want_avx2=yes #want_sse=yes AC_LANG([C]) dnl build with the possibilty to redirect stdout and stderr dnl per MPI task in a file AC_MSG_CHECKING(whether stdout/stderr file redirect should be enabled) AC_ARG_ENABLE([redirect], AS_HELP_STRING([--enable-redirect], [for test programs, allow redirection of stdout/stderr per MPI taks in a file (useful for timing), default no.]), [], [enable_redirect=no]) AC_MSG_RESULT([${enable_redirect}]) dnl redirect if test x"${enable_redirect}" = x"yes"; then AC_DEFINE([HAVE_REDIRECT], [1], [Redirect stdout and stderr of test programs per MPI tasks to a file]) fi AM_CONDITIONAL([HAVE_REDIRECT],[test x"$enable_redirect" = x"yes"]) dnl build with ftimings support AC_MSG_CHECKING(whether ELPA should be build with more detailed timing support) AC_ARG_ENABLE([timings], AS_HELP_STRING([--enable-timing], [more detailed timing, default no.]), [enable_timings=yes], [enable_timings=no]) AC_MSG_RESULT([${enable_timings}]) if test x"${enable_timings}" = x"yes"; then AC_DEFINE([HAVE_DETAILED_TIMINGS], [1], [Enable more timing]) fi AM_CONDITIONAL([HAVE_DETAILED_TIMINGS],[test x"$enable_timings" = x"yes"]) dnl PAPI for ftimings AC_ARG_WITH([papi], [AS_HELP_STRING([--with-papi],[Use PAPI to also measure flop count in the detailed timing (--enable-timing), disabled by default])], [], [with_papi="no"]) if test x"${enable_timings}" = x"yes"; then if test x"$with_papi" = x"yes" ; then AC_SEARCH_LIBS([PAPI_library_init],[papi], [papi_found=yes],[papi_found=no]) if test x"$papi_found" = x"no" ; then AC_MSG_ERROR(["Could not find usable PAPI installation, please install or adjust CFLAGS, LDFLAGS"]) fi AC_DEFINE([HAVE_LIBPAPI], [1], [Use the PAPI library]) fi fi AC_MSG_CHECKING(whether double-precision SSE assembly kernel can be compiled) $CC -c $srcdir/src/elpa2_kernels/elpa2_kernels_asm_x86_64_double_precision.s -o test.o 2>/dev/null if test "$?" == 0; then can_compile_sse_assembly=yes install_real_sse_assembly=yes install_complex_sse_assembly=yes else can_compile_sse_assembly=no install_real_sse_assembly=no install_complex_sse_assembly=no fi rm -f ./test.o AC_MSG_RESULT([${can_compile_sse_assembly}]) if test x"${want_single_precision}" = x"yes" ; then AC_MSG_CHECKING(whether single-precision SSE assembly kernel can be compiled) $CC -c $srcdir/src/elpa2_kernels/elpa2_kernels_asm_x86_64_single_precision.s -o test.o 2>/dev/null if test "$?" == 0; then can_compile_sse_assembly=yes install_real_sse_assembly=yes install_complex_sse_assembly=yes else can_compile_sse_assembly=no install_real_sse_assembly=no install_complex_sse_assembly=no fi rm -f ./test.o AC_MSG_RESULT([${can_compile_sse_assembly}]) if test x"${can_compile_sse_assembly}" = x"no" ; then AC_MSG_WARN([Cannot compile single-precision SSE assembly kernel: disabling SSE assembly kernels alltogether]) fi fi dnl check whether on can compile with sse-gcc intrinsics AC_MSG_CHECKING(whether we can compile SSE3 with gcc intrinsics in C) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ #include int main(int argc, char **argv){ double* q; __m128d h1 = _mm_loaddup_pd(q); return 0; } ])], [can_compile_sse_intrinsics=yes], [can_compile_sse_intrinsics=no] ) AC_MSG_RESULT([${can_compile_sse_intrinsics}]) if test "${can_compile_sse_intrinsics}" = "yes"; then install_real_sse_intrinsics=yes install_real_sse_block2=yes install_real_sse_block4=yes install_real_sse_block6=yes install_complex_sse_intrinsics=yes install_complex_sse_block1=yes install_complex_sse_block2=yes else install_real_sse_intrinsics=no install_real_sse_block2=no install_real_sse_block4=no install_real_sse_block6=no install_complex_sse_intrinsics=no install_complex_sse_block1=no install_complex_sse_block2=no fi dnl check whether one can compile with avx - gcc intrinsics dnl first pass: try with specified CFLAGS and CXXFLAGS AC_MSG_CHECKING(whether --enable-avx is specified) AC_ARG_ENABLE([avx], AS_HELP_STRING([--enable-avx], [check whether AVX kernels can be build, default yes]), [check_avx=no], [check_avx=yes]) AC_MSG_RESULT([$check_avx]) if test "${check_avx}" = "yes"; then AC_MSG_CHECKING([whether we can compile AVX intrinsics in C]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ #include int main(int argc, char **argv){ double* q; __m256d a1_1 = _mm256_load_pd(q); return 0; } ])], [can_compile_avx=yes], [can_compile_avx=no] ) AC_MSG_RESULT([${can_compile_avx}]) else can_compile_avx=no fi dnl if test "${can_compile_avx}" = "yes" ; then dnl AC_MSG_CHECKING([whether we can compile AVX intrinsics in C++]) dnl AC_LANG_PUSH([C++]) dnl AC_COMPILE_IFELSE([AC_LANG_SOURCE([ dnl #include dnl int main(int argc, char **argv){ dnl double* q; dnl __m256d a1_1 = _mm256_load_pd(q); dnl return 0; dnl } dnl ])], dnl [can_compile_avx=yes], dnl [can_compile_avx=no] dnl ) dnl AC_LANG_POP([C++]) dnl AC_MSG_RESULT([${can_compile_avx}]) dnl if test "${can_compile_avx}" = "no" ; then dnl AC_MSG_WARN([Cannot compile C++ with AVX: disabling AVX alltogether]) dnl fi dnl fi AC_MSG_CHECKING(whether --enable-avx2 is specified) AC_ARG_ENABLE([avx2], AS_HELP_STRING([--enable-avx2], [check whether AVX2 kernels can be build, default yes]), [check_avx2=no], [check_avx2=yes]) AC_MSG_RESULT([$check_avx2]) if test "${check_avx2}" = "yes"; then AC_MSG_CHECKING([whether we can compile AVX2 intrinsics in C]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ #include int main(int argc, char **argv){ double* q; __m256d q1 = _mm256_load_pd(q); __m256d y1 = _mm256_fmadd_pd(q1, q1, q1); return 0; } ])], [can_compile_avx2=yes], [can_compile_avx2=no] ) AC_MSG_RESULT([${can_compile_avx2}]) else can_compile_avx2=no fi dnl if test "${can_compile_avx2}" = "yes" ; then dnl AC_MSG_CHECKING([whether we can compile AVX2 intrinsics in C++]) dnl AC_LANG_PUSH([C++]) dnl AC_COMPILE_IFELSE([AC_LANG_SOURCE([ dnl #include dnl int main(int argc, char **argv){ dnl double* q; dnl __m256d q1 = _mm256_load_pd(q); dnl __m256d y1 = _mm256_fmadd_pd(q1, q1, q1); dnl return 0; dnl } dnl ])], dnl [can_compile_avx2=yes], dnl [can_compile_avx2=no] dnl ) dnl AC_LANG_POP([C++]) dnl AC_MSG_RESULT([${can_compile_avx2}]) dnl if test "${can_compile_avx2}" = "no" ; then dnl AC_MSG_WARN([Cannot compile C++ with AVX2!]) dnl fi dnl fi if test "${can_compile_avx}" = "yes" ; then install_real_avx_block2=yes install_real_avx_block4=yes install_real_avx_block6=yes install_complex_avx_block1=yes install_complex_avx_block2=yes else install_real_avx_block2=no install_real_avx_block4=no install_real_avx_block6=no install_complex_avx_block1=no install_complex_avx_block2=no fi if test "${can_compile_avx2}" = "yes" ; then install_real_avx2_block2=yes install_real_avx2_block4=yes install_real_avx2_block6=yes install_complex_avx2_block1=yes install_complex_avx2_block2=yes else install_real_avx2_block2=no install_real_avx2_block4=no install_real_avx2_block6=no install_complex_avx2_block1=no install_complex_avx2_block2=no fi AM_CONDITIONAL([HAVE_SSE_ASSEMBLY],[test x"$can_compile_sse_assembly" = x"yes"]) if test x"${can_compile_sse_assembly}" = x"yes" ; then AC_DEFINE([HAVE_SSE_ASSEMBLY],[1],[assembly SSE is supported on this CPU]) fi AM_CONDITIONAL([HAVE_SSE_INTRINSICS],[test x"$can_compile_sse_intrinsics" = x"yes"]) if test x"${can_compile_sse_intrinsics}" = x"yes" ; then AC_DEFINE([HAVE_SSE_INTRINSICS],[1],[gcc intrinsics SSE is supported on this CPU]) fi AM_CONDITIONAL([HAVE_AVX],[test x"$can_compile_avx" = x"yes"]) if test x"${can_compile_avx}" = x"yes" ; then AC_DEFINE([HAVE_AVX],[1],[AVX is supported on this CPU]) fi AM_CONDITIONAL([HAVE_AVX2],[test x"$can_compile_avx2" = x"yes"]) if test x"${can_compile_avx2}" = x"yes" ; then AC_DEFINE([HAVE_AVX2],[1],[AVX2 is supported on this CPU]) fi dnl set the AVX optimization flags if this option is specified AC_MSG_CHECKING(whether AVX optimization flags should be set automatically) AC_ARG_WITH([avx-optimization], AS_HELP_STRING([--with-avx-optimization], [use AVX optimization, default no.]), [with_avx_optimization=yes], [with_avx_optimization=no]) AC_MSG_RESULT([${with_avx_optimization}]) if test x"${with_avx_optimization}" = x"yes"; then CFLAGS="$CFLAGS -funsafe-loop-optimizations -funsafe-math-optimizations -ftree-vect-loop-version -ftree-vectorize" CXXFLAGS="$CXXFLAGS -funsafe-loop-optimizations -funsafe-math-optimizations -ftree-vect-loop-version -ftree-vectorize" fi AC_LANG([Fortran]) AC_FC_FREEFORM AC_FC_MODULE_FLAG AC_FC_MODULE_OUTPUT_FLAG AC_FC_LIBRARY_LDFLAGS save_FCFLAGS=$FCFLAGS save_LDFLAGS=$LDFLAGS AC_ARG_VAR([SCALAPACK_LDFLAGS],[Extra LDFLAGS necessary to link a program with Scalapack]) AC_ARG_VAR([SCALAPACK_FCFLAGS],[Extra FCFLAGS necessary to compile a Fortran program with Scalapack]) FCFLAGS="$FCFLAGS $SCALAPACK_FCFLAGS" LDFLAGS="$LDFLAGS $SCALAPACK_LDFLAGS" dnl check whether fortran error_unit is defined AC_MSG_CHECKING([whether Fortran module iso_fortran_env is available]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ program test_error_unit use ISO_FORTRAN_ENV, only : error_unit implicit none write(error_unit,*) "error_unit is defined" end program ])], [can_use_iso_fortran_env=yes], [can_use_iso_fortran_env=no] ) AC_MSG_RESULT([${can_use_iso_fortran_env}]) dnl check whether one can link with specified MKL (desired method) AC_MSG_CHECKING([whether we can compile a Fortran program using MKL]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ program test_mkl use mkl_service character*198 :: string call mkl_get_version_string(string) write(*,'(a)') string end program ])], [can_compile_with_mkl=yes], [can_compile_with_mkl=no] ) AC_MSG_RESULT([${can_compile_with_mkl}]) if test x"$can_compile_with_mkl" = x"yes" ; then AC_MSG_CHECKING([whether we can link a Fortran program with MKL]) AC_LINK_IFELSE([AC_LANG_SOURCE([ program test_mkl use mkl_service character*198 :: string call mkl_get_version_string(string) write(*,'(a)') string end program ])], [have_mkl=yes], [have_mkl=no] ) AC_MSG_RESULT([${have_mkl}]) fi dnl if not mkl, check all the necessary individually if test x"${have_mkl}" = x"yes" ; then WITH_MKL=1 else dnl first check blas AC_SEARCH_LIBS([dgemm],[openblas satlas blas],[have_blas=yes],[have_blas=no]) AC_MSG_CHECKING([whether we can link a program with a blas lib]) AC_MSG_RESULT([${have_blas}]) if test x"${have_blas}" = x"no" ; then AC_MSG_ERROR([could not link with blas: specify path]) fi dnl now lapack AC_SEARCH_LIBS([dlarrv],[lapack],[have_lapack=yes],[have_lapack=no]) AC_MSG_CHECKING([whether we can link a program with a lapack lib]) AC_MSG_RESULT([${have_lapack}]) if test x"${have_lapack}" = x"no" ; then AC_MSG_ERROR([could not link with lapack: specify path]) fi if test x"${with_mpi}" = x"yes"; then dnl test whether scalapack already contains blacs scalapack_libs="mpiscalapack scalapack scalapack-openmpi" old_LIBS="$LIBS" for lib in ${scalapack_libs}; do LIBS="-l${lib} ${old_LIBS}" AC_MSG_CHECKING([whether -l${lib} already contains a BLACS implementation]) AC_LINK_IFELSE([AC_LANG_FUNC_LINK_TRY([blacs_gridinit])],[blacs_in_scalapack=yes],[blacs_in_scalapack=no]) AC_MSG_RESULT([${blacs_in_scalapack}]) if test x"${blacs_in_scalapack}" = x"yes"; then break fi done if test x"${blacs_in_scalapack}" = x"no"; then LIBS="${old_LIBS}" dnl Test for stand-alone blacs AC_SEARCH_LIBS([bi_f77_init],[mpiblacsF77init],[],[],[-lmpiblacs]) dnl for debian AC_SEARCH_LIBS([blacs_gridinit],[blacs-openmpi],[have_blacs=yes],[have_blacs=no],[-lblacsCinit-openmpi -lscalapack-openmpi]) if test x"${have_blacs}" = x"no"; then unset ac_cv_search_blacs_gridinit fi AC_SEARCH_LIBS([blacs_gridinit],[mpiblacs blacs],[have_blacs=yes],[have_blacs=no]) if test x"${have_blacs}" = x"no"; then AC_MSG_ERROR([No usable BLACS found. If installed in a non-standard place, please specify suitable LDFLAGS and FCFLAGS as arguments to configure]) fi fi AC_SEARCH_LIBS([pdtran],[$scalapack_libs],[have_scalapack=yes],[have_scalapack=no]) if test x"${have_scalapack}" = x"no" ; then AC_MSG_ERROR([could not link with scalapack: specify path]) fi fi dnl check whether we can link alltogehter AC_MSG_CHECKING([whether we can link a Fortran program with all blacs/scalapack]) AC_LINK_IFELSE([AC_LANG_SOURCE([ program dgemm_test integer , parameter:: M = 4, N = 3, K = 2 real :: A(M,K), B(K,N), C(M,N) call dgemm('N','N',M,N,K,1.0,A,M,B,K,0.0,C,M) end program dgemm_test ])], [can_link_with_blacs_scalapack=yes], [can_link_with_blacs_scalapack=no] ) AC_MSG_RESULT([${can_link_with_blacs_scalapack}]) if test x"${can_link_with_blacs_scalapack}" = x"yes" ; then WITH_BLACS=1 else AC_MSG_ERROR([We can neither link with MKL or another Scalpack. Please specify SCALAPACK_LDFLAGS and SCALAPACK_FCFLAGS!]) fi fi dnl important: reset them again! FCFLAGS=$save_FCFLAGS LDFLAGS=$save_LDFLAGS dnl check for intrinsic fortran function of 2003 standard AC_MSG_CHECKING([whether we can use the intrinsic Fortran function "get_environment_variable"]) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ program test_get_environment character(len=256) :: homedir call get_environment_variable("HOME",homedir) end program ])], [fortran_can_check_environment=yes], [fortran_can_check_environment=no] ) AC_MSG_RESULT([${fortran_can_check_environment}]) if test x"${fortran_can_check_environment}" = x"yes" ; then AC_DEFINE([HAVE_ENVIRONMENT_CHECKING],[1],[Fortran can query environment variables]) fi dnl check whether BAND_TO_FULL_BLOCKING is set use_band_to_full_blocking=yes AC_MSG_CHECKING(whether BAND_TO_FLULL_BLOCKING is requested) AC_ARG_ENABLE(band-to-full-blocking,[AS_HELP_STRING([--enable-band-to-full-blocking], [build ELPA2 with blocking in band_to_full (default: enabled)])], want_band_to_full_blocking="yes", want_to_full_blocking="no") AC_MSG_RESULT([${want_band_to_full_blocking}]) if test x"${enableval}" = x"no" ; then use_band_to_full_blocking=no fi AM_CONDITIONAL([BAND_TO_FULL_BLOCKING],[test x"$use_band_to_full_blocking" = x"yes"]) if test x"${use_band_to_full_blocking}" = x"yes"; then AC_DEFINE([BAND_TO_FULL_BLOCKING], [1], [use blocking in trans_ev_band_to_full]) fi dnl check whether GPU version is requested #CUDA_INSTALL_PATH="/usr/local/cuda/" #CUDA_SDK_INSTALL_PATH="/usr/local/NVIDIA_GPU_Computing_SDK" AC_MSG_CHECKING(whether GPU support is requested) AC_ARG_ENABLE(gpu-support,[AS_HELP_STRING([--enable-gpu-support], [build ELPA2 with GPU-support])], want_gpu="yes", want_gpu="no") AC_MSG_RESULT([${want_gpu}]) AC_ARG_WITH([cuda-path],[AS_HELP_STRING([--with-cuda-path=PATH],[prefix where CUDA is installed @<:@default=auto@:>@])], [CUDA_INSTALL_PATH=$withval], [with_cuda=auto]) AC_ARG_WITH([cuda-sdk-path],[AS_HELP_STRING([--with-cuda-sdk-path=PATH],[prefix where CUDA SDK is installed @<:@default=auto@:>@])], [CUDA_SDK_INSTALL_PATH=$withval],[with_cuda_sdk=auto]) dnl setup nvcc flags and use them in later tests user_sets_gpu_compute_capability="no" AC_MSG_CHECKING(whether a GPU compute capability is specified) AC_ARG_WITH([GPU-compute-capability], [AS_HELP_STRING([--with-GPU-compute-capability=value], [use compute capability "value" for GPU version (default sm_35)])], [user_sets_gpu_compute_capability="yes"],[cuda_compute_capability="sm_35"]) AC_MSG_RESULT([${user_sets_gpu_compute_capability}]) dnl sanity check whether compute capability setting by user is reasonable if test x"${user_sets_gpu_compute_capability}" = x"yes" ; then dnl the user must set a value which starts with "sm_" value=$(echo $withval | cut -c1-3) if test x"${value}" = x"sm_" ; then cuda_compute_capability=$withval else AC_MSG_ERROR([Unknown GPU compute capability set: ${withval}]) fi fi if test x"${want_gpu}" = x"yes" ; then AC_LANG_PUSH([C]) CUDA_CFLAGS="$CUDA_CFLAGS -arch $cuda_compute_capability -O2 -I$CUDA_INSTALL_PATH/include" LDFLAGS="$LDFLAGS -L$CUDA_INSTALL_PATH/lib64" NVCCFLAGS="$NVCCFLAGS $CUDA_CFLAGS $CUDA_LDFLAGS" NVCC="nvcc" AC_SUBST(NVCC) AC_SUBST(NVCCFLAGS) dnl check whether nvcc compiler is found AC_CHECK_PROG(nvcc_found,nvcc,yes,no) if test x"${nvcc_found}" = x"no" ; then AC_MSG_ERROR([nvcc not found; try to set the cuda-path or disable GPU support]) fi dnl check whether we find cublas AC_SEARCH_LIBS([cublasDgemm],[cublas],[have_cublas=yes],[have_cublas=no]) if test x"${have_cublas}" = x"no"; then AC_MSG_ERROR([Could not link cublas; try to set the cuda-path or disable GPU support]) fi AC_SEARCH_LIBS([cudaMemcpy],[cudart],[have_cudart=yes],[have_cudart=no]) if test x"${have_cudart}" = x"no"; then AC_MSG_ERROR([Could not link cudart; try to set the cuda-path or disable GPU support]) fi AC_LANG_POP([C]) install_gpu=yes can_compile_gpu=yes fi dnl now check which kernels can be compiled dnl the checks for SSE were already done before dnl the checks for AVX were already done before dnl check BGP kernel AC_MSG_CHECKING([whether we can compile with BGP intrinsics]) AC_LINK_IFELSE([AC_LANG_SOURCE([ program test_bgp complex*16 :: y3,q3,h2 y3 = fxcpmadd(y3,q3,h2) end program ])], [can_compile_bgp=yes], [can_compile_bgp=no] ) AC_MSG_RESULT([${can_compile_bgp}]) if test x"${can_compile_bgp}" = x"yes" ; then install_real_bgp=yes install_complex_bgp=yes else install_real_bgp=no install_complex_bgp=no fi dnl check BGQ kernel AC_MSG_CHECKING([whether we can compile with BGQ intrinsics]) AC_LINK_IFELSE([AC_LANG_SOURCE([ program test_bgq VECTOR(REAL(8))::QPX_h2 real*8 :: hh(10,2) QPX_h2 = VEC_SPLATS(hh(2,2)) end program ])], [can_compile_bgq=yes], [can_compile_bgq=no] ) AC_MSG_RESULT([${can_compile_bgq}]) if test x"${can_compile_bgq}" = x"yes" ; then install_real_bgq=yes install_complex_bgq=yes else install_real_bgq=no install_complex_bgq=no fi dnl Test possibility of 'use mpi', if requested if test x"${with_mpi}" = x"yes" ; then AC_ARG_ENABLE([mpi-module], AS_HELP_STRING([--disable-mpi-module], [Do not use the Fortran MPI module, get interfaces by 'include "mpif.h')]), [], [enable_mpi_module=yes]) if test x"${enable_mpi_module}" = x"yes" ; then AC_MSG_CHECKING(whether Fortran mpi module can be used) AC_COMPILE_IFELSE([AC_LANG_SOURCE([ program test_mpi_module use mpi real :: time time = MPI_WTime() end program ])], [can_use_fortran_mpi_module=yes], [can_use_fortran_mpi_module=no] ) AC_MSG_RESULT([${can_use_fortran_mpi_module}]) if test x"${can_use_fortran_mpi_module}" = x"yes" ; then AC_DEFINE([HAVE_MPI_MODULE],[1],[can use the Fortran mpi module]) else AC_MSG_ERROR([Could not compile a Fortran program with an 'use mpi' statement. You can try again with --disable-mpi-module]) fi fi fi dnl default value use_specific_real_kernel=no use_specific_complex_kernel=no dnl GPU version only m4_include([m4/ax_elpa_gpu_version_only.m4]) DEFINE_OPTION_GPU_SUPPORT_ONLY([gpu-version-only],[gpu-support],[install_gpu]) dnl last check whether user wants to compile only a specific kernel dnl m4_include([m4/ax_elpa_specific_kernels.m4]) dnl real kernels dnl do not remove this variable it is needed in the macros dnl generic kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-generic-kernel-only],[generic-kernel],[install_real_generic]) dnl generic-simple kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-generic-simple-kernel-only],[generic-simple-kernel],[install_real_generic_simple]) dnl sse kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-sse-assembly-kernel-only],[sse-assembly-kernel],[install_real_sse_assembly]) dnl bgp kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-bgp-kernel-only],[bgp-kernel],[install_real_bgp]) dnl bgq kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-bgq-kernel-only],[bgq-kernel],[install_real_bgq]) dnl real-sse-block2 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-sse-block2-kernel-only],[real-sse-block2-kernel],[install_real_sse_block2]) dnl real-sse-block4 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-sse-block4-kernel-only],[real-sse-block4-kernel],[install_real_sse_block4]) dnl real-sse-block6 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-sse-block6-kernel-only],[real-sse-block6-kernel],[install_real_sse_block6]) dnl real-avx-block2 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-avx-block2-kernel-only],[real-avx-block2-kernel],[install_real_avx_block2]) dnl real-avx-block4 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-avx-block4-kernel-only],[real-avx-block4-kernel],[install_real_avx_block4]) dnl real-avx-block6 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-avx-block6-kernel-only],[real-avx-block6-kernel],[install_real_avx_block6]) dnl real-avx2-block2 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-avx2-block2-kernel-only],[real-avx2-block2-kernel],[install_real_avx2_block2]) dnl real-avx2-block4 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-avx2-block4-kernel-only],[real-avx2-block4-kernel],[install_real_avx2_block4]) dnl real-avx2-block6 kernel DEFINE_OPTION_SPECIFIC_REAL_KERNEL([real-avx2-block6-kernel-only],[real-avx2-block6-kernel],[install_real_avx2_block6]) dnl complex kernels dnl generic kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-generic-kernel-only],[generic-kernel],[install_complex_generic]) dnl generic-simple kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-generic-simple-kernel-only],[generic-simple-kernel],[install_complex_generic_simple]) dnl sse kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-sse-assembly-kernel-only],[sse-assembly-kernel],[install_complex_sse_assembly]) dnl complex-bqp kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-bgp-kernel-only],[bgp-kernel],[install_complex_bgp]) dnl complex-bqq kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-bgq-kernel-only],[bgq-kernel],[install_complex_bgq]) dnl complex-sse-block1 kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-sse-block1-kernel-only],[complex-sse-block1-kernel],[install_complex_sse_block1]) dnl complex-sse-block2 kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-sse-block2-kernel-only],[complex-sse-block2-kernel],[install_complex_sse_block2]) dnl complex-avx-block1 kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-avx-block1-kernel-only],[complex-avx-block1-kernel],[install_complex_avx_block1]) dnl complex-avx-block2 kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-avx-block2-kernel-only],[complex-avx-block2-kernel],[install_complex_avx_block2]) dnl complex-avx2-block1 kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-avx2-block1-kernel-only],[complex-avx2-block1-kernel],[install_complex_avx2_block1]) dnl complex-avx2-block2 kernel DEFINE_OPTION_SPECIFIC_COMPLEX_KERNEL([complex-avx2-block2-kernel-only],[complex-avx2-block2-kernel],[install_complex_avx2_block2]) dnl set the conditionals according to the previous tests if test x"${can_use_iso_fortran_env}" = x"yes" ; then AC_DEFINE([HAVE_ISO_FORTRAN_ENV],[1],[can use module iso_fortran_env]) fi AM_CONDITIONAL([WITH_GPU_VERSION],[test x"$install_gpu" = x"yes"]) if test x"${install_gpu}" = x"yes" ; then AC_DEFINE([WITH_GPU_VERSION],[1],[enable GPU support]) fi AM_CONDITIONAL([WITH_REAL_GENERIC_KERNEL],[test x"$install_real_generic" = x"yes"]) if test x"${install_real_generic}" = x"yes" ; then AC_DEFINE([WITH_REAL_GENERIC_KERNEL],[1],[can use real generic kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_GENERIC_KERNEL],[test x"$install_complex_generic" = x"yes"]) if test x"${install_complex_generic}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_GENERIC_KERNEL],[1],[can use complex generic kernel]) fi AM_CONDITIONAL([WITH_REAL_GENERIC_SIMPLE_KERNEL],[test x"$install_real_generic_simple" = x"yes"]) if test x"${install_real_generic_simple}" = x"yes" ; then AC_DEFINE([WITH_REAL_GENERIC_SIMPLE_KERNEL],[1],[can use real generic-simple kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_GENERIC_SIMPLE_KERNEL],[test x"$install_complex_generic_simple" = x"yes"]) if test x"${install_complex_generic_simple}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_GENERIC_SIMPLE_KERNEL],[1],[can use complex generic-simple kernel]) fi AM_CONDITIONAL([WITH_REAL_SSE_ASSEMBLY_KERNEL],[test x"$install_real_sse_assembly" = x"yes"]) if test x"${install_real_sse_assembly}" = x"yes" ; then AC_DEFINE([WITH_REAL_SSE_ASSEMBLY_KERNEL],[1],[can use real SSE assembly kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_SSE_ASSEMBLY_KERNEL],[test x"$install_complex_sse_assembly" = x"yes"]) if test x"${install_complex_sse_assembly}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_SSE_ASSEMBLY_KERNEL],[1],[can use complex SSE assembly kernel]) fi AM_CONDITIONAL([WITH_REAL_SSE_BLOCK2_KERNEL],[test x"$install_real_sse_block2" = x"yes"]) if test x"${install_real_sse_block2}" = x"yes" ; then AC_DEFINE([WITH_REAL_SSE_BLOCK2_KERNEL],[1],[can use real_sse_block2 kernel]) fi AM_CONDITIONAL([WITH_REAL_SSE_BLOCK4_KERNEL],[test x"$install_real_sse_block4" = x"yes"]) if test x"${install_real_sse_block4}" = x"yes" ; then AC_DEFINE([WITH_REAL_SSE_BLOCK4_KERNEL],[1],[can use real_sse_block4 kernel]) fi AM_CONDITIONAL([WITH_REAL_SSE_BLOCK6_KERNEL],[test x"$install_real_sse_block6" = x"yes"]) if test x"${install_real_sse_block6}" = x"yes" ; then AC_DEFINE([WITH_REAL_SSE_BLOCK6_KERNEL],[1],[can use real_sse_block6 kernel]) fi AM_CONDITIONAL([WITH_REAL_AVX_BLOCK2_KERNEL],[test x"$install_real_avx_block2" = x"yes"]) if test x"${install_real_avx_block2}" = x"yes" ; then AC_DEFINE([WITH_REAL_AVX_BLOCK2_KERNEL],[1],[can use real_avx_block2 kernel]) fi AM_CONDITIONAL([WITH_REAL_AVX_BLOCK4_KERNEL],[test x"$install_real_avx_block4" = x"yes"]) if test x"${install_real_avx_block4}" = x"yes" ; then AC_DEFINE([WITH_REAL_AVX_BLOCK4_KERNEL],[1],[can use real_avx_block4 kernel]) fi AM_CONDITIONAL([WITH_REAL_AVX_BLOCK6_KERNEL],[test x"$install_real_avx_block6" = x"yes"]) if test x"${install_real_avx_block6}" = x"yes" ; then AC_DEFINE([WITH_REAL_AVX_BLOCK6_KERNEL],[1],[can use real_avx_block6 kernel]) fi AM_CONDITIONAL([WITH_REAL_AVX2_BLOCK2_KERNEL],[test x"$install_real_avx2_block2" = x"yes"]) if test x"${install_real_avx2_block2}" = x"yes" ; then AC_DEFINE([WITH_REAL_AVX2_BLOCK2_KERNEL],[1],[can use real_avx2_block2 kernel]) fi AM_CONDITIONAL([WITH_REAL_AVX2_BLOCK4_KERNEL],[test x"$install_real_avx2_block4" = x"yes"]) if test x"${install_real_avx2_block4}" = x"yes" ; then AC_DEFINE([WITH_REAL_AVX2_BLOCK4_KERNEL],[1],[can use real_avx2_block4 kernel]) fi AM_CONDITIONAL([WITH_REAL_AVX2_BLOCK6_KERNEL],[test x"$install_real_avx2_block6" = x"yes"]) if test x"${install_real_avx2_block6}" = x"yes" ; then AC_DEFINE([WITH_REAL_AVX2_BLOCK6_KERNEL],[1],[can use real_avx2_block6 kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_SSE_BLOCK1_KERNEL],[test x"$install_complex_sse_block1" = x"yes"]) if test x"${install_complex_sse_block1}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_SSE_BLOCK1_KERNEL],[1],[can use complex_sse_block1 kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_SSE_BLOCK2_KERNEL],[test x"$install_complex_sse_block2" = x"yes"]) if test x"${install_complex_sse_block2}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_SSE_BLOCK2_KERNEL],[1],[can use complex_sse_block2 kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_AVX_BLOCK1_KERNEL],[test x"$install_complex_avx_block1" = x"yes"]) if test x"${install_complex_avx_block1}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_AVX_BLOCK1_KERNEL],[1],[can use complex_avx_block1 kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_AVX_BLOCK2_KERNEL],[test x"$install_complex_avx_block2" = x"yes"]) if test x"${install_complex_avx_block2}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_AVX_BLOCK2_KERNEL],[1],[can use complex_avx_block2 kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_AVX2_BLOCK1_KERNEL],[test x"$install_complex_avx2_block1" = x"yes"]) if test x"${install_complex_avx2_block1}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_AVX2_BLOCK1_KERNEL],[1],[can use complex_avx2_block1 kernel]) fi AM_CONDITIONAL([WITH_COMPLEX_AVX2_BLOCK2_KERNEL],[test x"$install_complex_avx2_block2" = x"yes"]) if test x"${install_complex_avx2_block2}" = x"yes" ; then AC_DEFINE([WITH_COMPLEX_AVX2_BLOCK2_KERNEL],[1],[can use complex_avx2_block2 kernel]) fi AM_CONDITIONAL([WITH_REAL_BGP_KERNEL],[test x"$install_real_bgp" = x"yes"]) if test x"${install_real_bgp}" = x"yes" ; then AC_DEFINE([WITH_REAL_BGP_KERNEL],[1],[can use real BGP kernel]) fi AM_CONDITIONAL([WITH_REAL_BGQ_KERNEL],[test x"$install_real_bgq" = x"yes"]) if test x"${install_real_bgq}" = x"yes" ; then AC_DEFINE([WITH_REAL_BGQ_KERNEL],[1],[can use real BGQ kernel]) fi if test x"${use_specific_complex_kernel}" = x"no" ; then AC_DEFINE([WITH_NO_SPECIFIC_COMPLEX_KERNEL],[1],[do not use only one specific complex kernel (set at compile time)]) else AC_DEFINE([WITH_ONE_SPECIFIC_COMPLEX_KERNEL],[1],[use only one specific complex kernel (set at compile time)]) fi if test x"${use_specific_real_kernel}" = x"no" ; then AC_DEFINE([WITH_NO_SPECIFIC_REAL_KERNEL],[1],[do not use only one specific real kernel (set at compile time)]) else AC_DEFINE([WITH_ONE_SPECIFIC_REAL_KERNEL],[1],[use only one specific real kernel (set at compile time)]) fi LT_INIT DX_PDF_FEATURE(OFF) DX_PS_FEATURE(OFF) DX_MAN_FEATURE(ON) DX_HTML_FEATURE(ON) DX_INIT_DOXYGEN([ELPA], [Doxyfile], [docs]) USE_ASSUMED_SIZE=yes AC_MSG_CHECKING(whether assumed size Fortran arrays should be used) AC_ARG_ENABLE([assumed-size], AS_HELP_STRING([--disable-assumed-size], [do NOT use assumed-size Fortran arrays]), [if test x"$enableval" = x"yes"; then USE_ASSUMED_SIZE=yes else USE_ASSUMED_SIZE=no fi], [USE_ASSUMED_SIZE=yes]) AC_MSG_RESULT([${USE_ASSUMED_SIZE}]) AM_CONDITIONAL([WITH_USE_ASSUMED_SIZE],[test x"$USE_ASSUMED_SIZE" = x"yes"]) if test x"${USE_ASSUMED_SIZE}" = x"yes" ; then AC_DEFINE([USE_ASSUMED_SIZE],[1],[for performance reasons use assumed size Fortran arrays, even if not debuggable]) fi if test x"${want_single_precision}" = x"yes" ; then AC_DEFINE([WANT_SINGLE_PRECISION_REAL],[1],[build also single-precision for real calculation]) AC_DEFINE([WANT_SINGLE_PRECISION_COMPLEX],[1],[build also single-precision for complex calculation]) fi AM_CONDITIONAL([WANT_SINGLE_PRECISION_REAL],[test x"$want_single_precision" = x"yes"]) AM_CONDITIONAL([WANT_SINGLE_PRECISION_COMPLEX],[test x"$want_single_precision" = x"yes"]) AC_SUBST([MPI_BINARY]) AC_SUBST([WITH_MKL]) AC_SUBST([WITH_BLACS]) AC_SUBST([with_amd_bulldozer_kernel]) AC_SUBST([FC_MODINC]) AC_SUBST([FC_MODOUT]) AC_SUBST([OPENMP_CFLAGS]) AC_SUBST([OPENMP_FCFLAGS]) AC_SUBST([OPENMP_LDFLAGS]) AC_SUBST([DOXYGEN_OUTPUT_DIR], [docs]) rm -rf modules/ private_modules/ .fortran_dependencies/ mkdir modules private_modules #gl_VISIBILITY #AH_BOTTOM([#if HAVE_VISIBILITY #define EXPORTED __attribute__((__visibility__("default"))) #define HIDDEN __attribute__((__visibility__("hidden"))) #else #define EXPORTED #define HIDDEN #endif]) # Some part of libtool is too smart and tries to parse the output of # gfortran -v # and catches anything that resembles a -l library link specification. # Unfortunately, recent versions of gfortran emit # -l gfortran # with a space between -l and gfortran. The empty -l is then included # into "postdeps_FC" and causes linking errors later on. postdeps_FC=$(echo $postdeps_FC | sed 's/-l //g') if test x"${with_mpi}" = x"yes"; then if test x"${enable_openmp}" = x"yes"; then SUFFIX="_openmp" else SUFFIX="" fi else if test x"${enable_openmp}" = x"yes"; then SUFFIX="_onenode_openmp" else SUFFIX="_onenode" fi fi AC_SUBST([SUFFIX]) AC_SUBST([PKG_CONFIG_FILE],[elpa${SUFFIX}-${PACKAGE_VERSION}.pc]) AC_CONFIG_FILES([ Makefile Doxyfile ${PKG_CONFIG_FILE}:elpa.pc.in ]) AC_OUTPUT if test "${can_compile_avx}" = "no" ; then # if test x"${want_avx}" = x"yes" ; then AC_MSG_WARN([Could not compile AVX instructions]) # fi fi if test "${can_compile_avx2}" = "no" ; then # if test x"${want_avx2}" = x"yes" ; then AC_MSG_WARN([Could not compile AVX2 instructions]) # fi fi if test "${can_compile_sse}" = "no" ; then AC_MSG_WARN([Could not compile SSE instructions]) fi echo " " echo "***********************************************************************" echo "* This is a prerelease of the ELPA library 2016.11.001.pre library! *" echo "* It contains an experimental API which will most likely change with *" echo "* the next stable release. *" echo "***********************************************************************" echo " " make -f $srcdir/generated_headers.am generated-headers top_srcdir="$srcdir"