#if 0 ! This file is part of ELPA. ! ! The ELPA library was originally created by the ELPA consortium, ! consisting of the following organizations: ! ! - Max Planck Computing and Data Facility (MPCDF), formerly known as ! Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG), ! - Bergische Universität Wuppertal, Lehrstuhl für angewandte ! Informatik, ! - Technische Universität München, Lehrstuhl für Informatik mit ! Schwerpunkt Wissenschaftliches Rechnen , ! - Fritz-Haber-Institut, Berlin, Abt. Theorie, ! - Max-Plack-Institut für Mathematik in den Naturwissenschaften, ! Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition, ! and ! - IBM Deutschland GmbH ! ! This particular source code file contains additions, changes and ! enhancements authored by Intel Corporation which is not part of ! the ELPA consortium. ! ! More information can be found here: ! http://elpa.mpcdf.mpg.de/ ! ! ELPA is free software: you can redistribute it and/or modify ! it under the terms of the version 3 of the license of the ! GNU Lesser General Public License as published by the Free ! Software Foundation. ! ! ELPA is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU Lesser General Public License for more details. ! ! You should have received a copy of the GNU Lesser General Public License ! along with ELPA. If not, see ! ! ELPA reflects a substantial effort on the part of the original ! ELPA consortium, and we ask you to respect the spirit of the ! license that we chose: i.e., please contribute any changes you ! may have back to the original ELPA library distribution, and keep ! any derivatives of ELPA under the same license that we chose for ! the original distribution, the GNU Lesser General Public License. ! ! ! ELPA1 -- Faster replacements for ScaLAPACK symmetric eigenvalue routines ! ! Copyright of the original code rests with the authors inside the ELPA ! consortium. The copyright of any additional modifications shall rest ! with their original authors, but shall adhere to the licensing terms ! distributed along with the original code in the file "COPYING". #endif !> \brief Reduces a distributed symmetric matrix to tridiagonal form (like Scalapack Routine PDSYTRD) !> ! Parameters ! !> \param na Order of matrix !> !> \param a_mat(lda,matrixCols) Distributed matrix which should be reduced. !> Distribution is like in Scalapack. !> Opposed to PDSYTRD, a(:,:) must be set completely (upper and lower half) !> a(:,:) is overwritten on exit with the Householder vectors !> !> \param lda Leading dimension of a !> !> \param nblk blocksize of cyclic distribution, must be the same in both directions! !> !> \param matrixCols local columns of matrix !> !> \param mpi_comm_rows MPI-Communicator for rows !> \param mpi_comm_cols MPI-Communicator for columns !> !> \param d_vec(na) Diagonal elements (returned), identical on all processors !> !> \param e_vec(na) Off-Diagonal elements (returned), identical on all processors !> !> \param tau(na) Factors for the Householder vectors (returned), needed for back transformation !> !> \param useGPU If true, GPU version of the subroutine will be used !> subroutine tridiag_& &MATH_DATATYPE& &_& &PRECISION & (na, a_mat, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, d_vec, e_vec, tau, useGPU) use cuda_functions use iso_c_binding #ifdef HAVE_DETAILED_TIMINGS use timings #else use timings_dummy #endif use precision implicit none integer(kind=ik), intent(in) :: na, lda, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols logical, intent(in) :: useGPU #if REALCASE == 1 real(kind=REAL_DATATYPE), intent(out) :: tau(na) #endif #if COMPLEXCASE == 1 complex(kind=COMPLEX_DATATYPE), intent(out) :: tau(na) #endif #if REALCASE == 1 #ifdef USE_ASSUMED_SIZE real(kind=REAL_DATATYPE), intent(inout) :: a_mat(lda,*) #else real(kind=REAL_DATATYPE), intent(inout) :: a_mat(lda,matrixCols) #endif #endif #if COMPLEXCASE == 1 #ifdef USE_ASSUMED_SIZE complex(kind=COMPLEX_DATATYPE), intent(inout) :: a_mat(lda,*) #else complex(kind=COMPLEX_DATATYPE), intent(inout) :: a_mat(lda,matrixCols) #endif #endif real(kind=REAL_DATATYPE), intent(out) :: d_vec(na), e_vec(na) integer(kind=ik), parameter :: max_stored_uv = 32 ! id in processor row and column and total numbers of processor rows and columns integer(kind=ik) :: my_prow, my_pcol, np_rows, np_cols, my_rank integer(kind=ik) :: mpierr #if REALCASE == 1 #ifdef DOUBLE_PRECISION_REAL real(kind=rk8), parameter :: ZERO=0.0_rk8, ONE = 1.0_rk8 #else real(kind=rk4), parameter :: ZERO=0.0_rk4, ONE = 1.0_rk4 #endif #endif #if COMPLEXCASE == 1 #ifdef DOUBLE_PRECISION_COMPLEX complex(kind=ck8), parameter :: ZERO = (0.0_rk8,0.0_rk8), ONE = (1.0_rk8,0.0_rk8) #else complex(kind=ck4), parameter :: ZERO = (0.0_rk4,0.0_rk4), ONE = (1.0_rk4,0.0_rk4) #endif #endif integer(kind=ik) :: totalblocks, max_loc_block_rows, max_loc_block_cols, max_local_rows, & max_local_cols ! updated after each istep (in the main cycle) to contain number of ! local columns and rows of the remaining part of the matrix !integer(kind=ik) :: l_cols, l_rows integer(kind=ik) :: l_cols, l_rows integer(kind=ik) :: n_stored_vecs integer(kind=C_intptr_T) :: a_dev, v_row_dev, v_col_dev, u_row_dev, u_col_dev, vu_stored_rows_dev, & uv_stored_cols_dev logical :: successCUDA integer(kind=ik) :: istep, i, j, l_col_beg, l_col_end, l_row_beg, l_row_end integer(kind=ik) :: tile_size, l_rows_per_tile, l_cols_per_tile integer(kind=c_size_t) :: a_offset #ifdef WITH_OPENMP integer(kind=ik) :: my_thread, n_threads, max_threads, n_iter integer(kind=ik) :: omp_get_thread_num, omp_get_num_threads, omp_get_max_threads #endif real(kind=REAL_DATATYPE) :: vnorm2 #if REALCASE == 1 real(kind=REAL_DATATYPE) :: vav, x, aux(2*max_stored_uv), aux1(2), aux2(2), vrl, xf #endif #if COMPLEXCASE == 1 complex(kind=COMPLEX_DATATYPE) :: vav, xc, aux(2*max_stored_uv), aux1(2), aux2(2), aux3(1), vrl, xf #endif #if REALCASE == 1 real(kind=REAL_DATATYPE), allocatable :: tmp(:), & v_row(:), & ! used to store calculated Householder vector v_col(:), & ! the same vector, but transposed - differently distributed among MPI tasks u_row(:), & u_col(:) #endif #if COMPLEXCASE == 1 complex(kind=COMPLEX_DATATYPE), allocatable :: tmp(:), v_row(:), v_col(:), u_row(:), u_col(:) #endif ! the following two matrices store pairs of vectors v and u calculated in each step ! at most max_stored_uv vector pairs are stored, than the matrix A_i is explicitli updated ! u and v are stored both in row and vector forms ! pattern: v1,u1,v2,u2,v3,u3,.... ! todo: It is little bit confusing, I think, that variables _row actually store columns and vice versa #if REALCASE == 1 real(kind=REAL_DATATYPE), allocatable :: vu_stored_rows(:,:) ! pattern: u1,v1,u2,v2,u3,v3,.... real(kind=REAL_DATATYPE), allocatable :: uv_stored_cols(:,:) #endif #if COMPLEXCASE == 1 complex(kind=COMPLEX_DATATYPE), allocatable :: vu_stored_rows(:,:), uv_stored_cols(:,:) #endif #ifdef WITH_OPENMP #if REALCASE == 1 real(kind=REAL_DATATYPE), allocatable :: ur_p(:,:), uc_p(:,:) #endif #if COMPLEXCASE == 1 complex(kind=COMPLEX_DATATYPE), allocatable :: ur_p(:,:), uc_p(:,:) #endif #endif #if COMPLEXCASE == 1 real(kind=REAL_DATATYPE), allocatable :: tmp_real(:) #endif integer(kind=ik) :: istat character(200) :: errorMessage integer(kind=c_size_t), parameter :: size_of_datatype = size_of_& &PRECISION& &_& &MATH_DATATYPE call timer%start("tridiag_& &MATH_DATATYPE& &_" // & PRECISION_SUFFIX & ) call timer%start("mpi_communication") call mpi_comm_rank(mpi_comm_rows,my_prow,mpierr) call mpi_comm_size(mpi_comm_rows,np_rows,mpierr) call mpi_comm_rank(mpi_comm_cols,my_pcol,mpierr) call mpi_comm_size(mpi_comm_cols,np_cols,mpierr) call timer%stop("mpi_communication") ! Matrix is split into tiles; work is done only for tiles on the diagonal or above ! seems that tile is a square submatrix, consisting by several blocks ! it is a smallest possible square submatrix, where blocks being distributed among ! processors are "aligned" in both rows and columns ! ----------------- ! | 1 4 | 1 4 | 1 4 | ... ! | 2 5 | 2 5 | 2 5 | ... ! | 3 6 | 3 6 | 3 6 | ... ! ----------------- ... ! | 1 4 | 1 4 | 1 4 | ... ! | 2 5 | 2 5 | 2 5 | ... ! | 3 6 | 3 6 | 3 6 | ... ! ----------------- . ! : : : : : : . ! : : : : : : . ! ! this is a tile, where each number represents block, assigned to a processor with the shown number ! size of this small block is nblk ! Image is for situation with 6 processors, 3 processor rows and 2 columns ! tile_size is thus nblk * 6 ! tile_size = nblk*least_common_multiple(np_rows,np_cols) ! minimum global tile size tile_size = ((128*max(np_rows,np_cols)-1)/tile_size+1)*tile_size ! make local tiles at least 128 wide l_rows_per_tile = tile_size/np_rows ! local rows of a tile l_cols_per_tile = tile_size/np_cols ! local cols of a tile totalblocks = (na-1)/nblk + 1 max_loc_block_rows = (totalblocks-1)/np_rows + 1 max_loc_block_cols = (totalblocks-1)/np_cols + 1 ! localy owned submatrix has size at most max_local_rows x max_local_cols at each processor max_local_rows = max_loc_block_rows*nblk max_local_cols = max_loc_block_cols*nblk ! allocate memmory for vectors ! todo: It is little bit confusing, I think, that variables _row actually store columns and vice versa ! todo: if something has length max_local_rows, it is actually a column, no? ! todo: probably one should read it as v_row = vector v distributed among rows ! allocate(tmp(MAX(max_local_rows,max_local_cols)), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "tmp", istat, errorMessage) ! allocate v_row 1 element longer to allow store and broadcast tau together with it allocate(v_row(max_local_rows+1), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "v_row", istat, errorMessage) allocate(u_row(max_local_rows), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "u_row", istat, errorMessage) allocate(v_col(max_local_cols), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "v_col", istat, errorMessage) allocate(u_col(max_local_cols), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "u_col", istat, errorMessage) #ifdef WITH_OPENMP max_threads = omp_get_max_threads() allocate(ur_p(max_local_rows,0:max_threads-1), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "ur_p", istat, errorMessage) allocate(uc_p(max_local_cols,0:max_threads-1), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "uc_p", istat, errorMessage) #endif /* WITH_OPENMP */ tmp = 0 v_row = 0 u_row = 0 v_col = 0 u_col = 0 allocate(vu_stored_rows(max_local_rows,2*max_stored_uv), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "vu_stored_rows", istat, errorMessage) allocate(uv_stored_cols(max_local_cols,2*max_stored_uv), stat=istat, errmsg=errorMessage) call check_alloc("tridiag_& &MATH_DATATYPE ", "uv_stored_cols", istat, errorMessage) if (useGPU) then successCUDA = cuda_malloc(v_row_dev, max_local_rows * size_of_datatype) check_alloc_cuda("tridiag: v_row_dev", successCUDA) successCUDA = cuda_malloc(u_row_dev, max_local_rows * size_of_datatype) check_alloc_cuda("tridiag: u_row_dev", successCUDA) successCUDA = cuda_malloc(v_col_dev, max_local_cols * size_of_datatype) check_alloc_cuda("tridiag: v_col_dev", successCUDA) successCUDA = cuda_malloc(u_col_dev, max_local_cols * size_of_datatype) check_alloc_cuda("tridiag: u_col_dev", successCUDA) successCUDA = cuda_malloc(vu_stored_rows_dev, max_local_rows * 2 * max_stored_uv * size_of_datatype) check_alloc_cuda("tridiag: vu_stored_rows_dev", successCUDA) successCUDA = cuda_malloc(uv_stored_cols_dev, max_local_cols * 2 * max_stored_uv * size_of_datatype) check_alloc_cuda("tridiag: vu_stored_rows_dev", successCUDA) endif !useGPU d_vec(:) = 0 e_vec(:) = 0 tau(:) = 0 n_stored_vecs = 0 l_rows = local_index(na, my_prow, np_rows, nblk, -1) ! Local rows of a_mat l_cols = local_index(na, my_pcol, np_cols, nblk, -1) ! Local cols of a_mat if (my_prow == prow(na, nblk, np_rows) .and. my_pcol == pcol(na, nblk, np_cols)) & d_vec(na) = a_mat(l_rows,l_cols) if (useGPU) then ! allocate memmory for matrix A on the device and than copy the matrix successCUDA = cuda_malloc(a_dev, lda * matrixCols * size_of_datatype) check_alloc_cuda("tridiag: a_dev", successCUDA) successCUDA = cuda_memcpy(a_dev, loc(a_mat(1,1)), lda * matrixCols * size_of_datatype, cudaMemcpyHostToDevice) check_alloc_cuda("tridiag: a_dev", successCUDA) endif ! main cycle of tridiagonalization ! in each step, 1 Householder vector is calculated do istep = na, 3 ,-1 ! Calculate number of local rows and columns of the still remaining matrix ! on the local processor l_rows = local_index(istep-1, my_prow, np_rows, nblk, -1) l_cols = local_index(istep-1, my_pcol, np_cols, nblk, -1) ! Calculate vector for Householder transformation on all procs ! owning column istep if (my_pcol == pcol(istep, nblk, np_cols)) then ! Get vector to be transformed; distribute last element and norm of ! remaining elements to all procs in current column ! copy l_cols + 1 column of A to v_row if (useGPU) then a_offset = l_cols * lda * size_of_datatype ! we use v_row on the host at the moment! successCUDA = cuda_memcpy(v_row_dev, a_dev + a_offset, (l_rows)*size_of_PRECISION_real, cudaMemcpyDeviceToDevice) successCUDA = cuda_memcpy(loc(v_row(1)), a_dev + a_offset, (l_rows)* size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag a_dev 1", successCUDA) else v_row(1:l_rows) = a_mat(1:l_rows,l_cols+1) endif if (n_stored_vecs > 0 .and. l_rows > 0) then call timer%start("blas") #if COMPLEXCASE == 1 aux(1:2*n_stored_vecs) = conjg(uv_stored_cols(l_cols+1,1:2*n_stored_vecs)) #endif call PRECISION_GEMV('N', & l_rows, 2*n_stored_vecs, & ONE, vu_stored_rows, ubound(vu_stored_rows,dim=1), & #if REALCASE == 1 uv_stored_cols(l_cols+1,1), ubound(uv_stored_cols,dim=1), & #endif #if COMPLEXCASE == 1 aux, 1, & #endif ONE, v_row, 1) call timer%stop("blas") endif if(my_prow == prow(istep-1, nblk, np_rows)) then aux1(1) = dot_product(v_row(1:l_rows-1),v_row(1:l_rows-1)) aux1(2) = v_row(l_rows) else aux1(1) = dot_product(v_row(1:l_rows),v_row(1:l_rows)) aux1(2) = 0. endif #ifdef WITH_MPI call timer%start("mpi_communication") call mpi_allreduce(aux1, aux2, 2, MPI_MATH_DATATYPE_PRECISION, & MPI_SUM, mpi_comm_rows, mpierr) call timer%stop("mpi_communication") #else /* WITH_MPI */ aux2 = aux1 #endif /* WITH_MPI */ vnorm2 = aux2(1) vrl = aux2(2) ! Householder transformation #if REALCASE == 1 call hh_transform_real_& #endif #if COMPLEXCASE == 1 call hh_transform_complex_& #endif &PRECISION & (vrl, vnorm2, xf, tau(istep)) ! Scale v_row and store Householder vector for back transformation v_row(1:l_rows) = v_row(1:l_rows) * xf if (my_prow == prow(istep-1, nblk, np_rows)) then v_row(l_rows) = 1. ! vrl is newly computed off-diagonal element of the final tridiagonal matrix e_vec(istep-1) = vrl endif ! store Householder vector for back transformation a_mat(1:l_rows,l_cols+1) = v_row(1:l_rows) ! add tau after the end of actuall v_row, to be broadcasted with it v_row(l_rows+1) = tau(istep) endif !(my_pcol == pcol(istep, nblk, np_cols)) #ifdef WITH_MPI ! Broadcast the Householder vector (and tau) along columns call MPI_Bcast(v_row, l_rows+1, MPI_MATH_DATATYPE_PRECISION, & pcol(istep, nblk, np_cols), mpi_comm_cols, mpierr) #endif /* WITH_MPI */ !recover tau, which has been broadcasted together with v_row tau(istep) = v_row(l_rows+1) ! Transpose Householder vector v_row -> v_col call elpa_transpose_vectors_& &MATH_DATATYPE& &_& &PRECISION & (v_row, ubound(v_row,dim=1), mpi_comm_rows, v_col, ubound(v_col,dim=1), mpi_comm_cols, & 1, istep-1, 1, nblk) ! Calculate u = (A + VU**T + UV**T)*v ! For cache efficiency, we use only the upper half of the matrix tiles for this, ! thus the result is partly in u_col(:) and partly in u_row(:) u_col(1:l_cols) = 0 u_row(1:l_rows) = 0 if (l_rows > 0 .and. l_cols> 0 ) then if(useGPU) then successCUDA = cuda_memset(u_col_dev, 0, l_cols * size_of_datatype) check_memcpy_cuda("tridiag: u_col_dev", successCUDA) successCUDA = cuda_memset(u_row_dev, 0, l_rows * size_of_datatype) check_memcpy_cuda("tridiag: u_row_dev", successCUDA) successCUDA = cuda_memcpy(v_col_dev, loc(v_col(1)), l_cols * size_of_datatype, cudaMemcpyHostToDevice) check_memcpy_cuda("tridiag: v_col_dev", successCUDA) successCUDA = cuda_memcpy(v_row_dev, loc(v_row(1)), l_rows * size_of_datatype, cudaMemcpyHostToDevice) check_memcpy_cuda("tridiag: v_row_dev", successCUDA) endif ! useGU #if REALCASE == 1 ! if (useGPU) then !u_col_dev(1:l_cols) = 0. !u_row_dev(1:l_rows) = 0. !v_col_dev(1:l_cols) = v_col(1:l_cols) !v_row_dev(1:l_rows) = v_row(1:l_rows) ! do i=0,(istep-2)/tile_size ! l_col_beg = i*l_cols_per_tile+1 ! l_col_end = min(l_cols,(i+1)*l_cols_per_tile) ! if(l_col_end a_mat ? !write(*,*) "ubound ", ubound(a_mat,1), "lda", lda, "lcols", l_cols ! call PRECISION_SYMV('U', l_cols, & ! 1.d0, a_mat, ubound(a_mat,1), & ! v_row, 1, & ! 0.d0, u_col, 1) !u_col(1:l_cols) = u_col_dev(1:l_cols) !u_row(1:l_rows) = u_row_dev(1:l_rows) ! else !do not use GPU #endif #ifdef WITH_OPENMP call timer%start("OpenMP parallel") !$OMP PARALLEL PRIVATE(my_thread,n_threads,n_iter,i,l_col_beg,l_col_end,j,l_row_beg,l_row_end) my_thread = omp_get_thread_num() n_threads = omp_get_num_threads() n_iter = 0 uc_p(1:l_cols,my_thread) = 0. ur_p(1:l_rows,my_thread) = 0. #endif /* WITH_OPENMP */ do i= 0, (istep-2)/tile_size l_col_beg = i*l_cols_per_tile+1 l_col_end = min(l_cols,(i+1)*l_cols_per_tile) if (l_col_end < l_col_beg) cycle do j = 0, i l_row_beg = j*l_rows_per_tile+1 l_row_end = min(l_rows,(j+1)*l_rows_per_tile) if (l_row_end < l_row_beg) cycle #ifdef WITH_OPENMP if (mod(n_iter,n_threads) == my_thread) then call timer%start("blas") call PRECISION_GEMV(BLAS_TRANS_OR_CONJ, l_row_end-l_row_beg+1, l_col_end-l_col_beg+1, & ONE, a_mat(l_row_beg,l_col_beg), lda, & v_row(l_row_beg), 1, ONE, uc_p(l_col_beg,my_thread), 1) if (i/=j) then call PRECISION_GEMV('N', l_row_end-l_row_beg+1, l_col_end-l_col_beg+1, & ONE, a_mat(l_row_beg,l_col_beg), lda, v_col(l_col_beg), 1, & ONE, ur_p(l_row_beg,my_thread), 1) endif call timer%stop("blas") endif n_iter = n_iter+1 #else /* WITH_OPENMP */ if (useGPU) then a_offset = ((l_row_beg-1) + (l_col_beg - 1) * lda) * size_of_datatype call timer%start("cublas") call cublas_PRECISION_GEMV(BLAS_TRANS_OR_CONJ, & l_row_end-l_row_beg+1,l_col_end-l_col_beg+1, & ONE, a_dev + a_offset, lda, & v_row_dev + (l_row_beg - 1) * & size_of_datatype, 1, & ONE, u_col_dev + (l_col_beg - 1) * & size_of_datatype, 1) if(i/=j) then call cublas_PRECISION_GEMV('N', l_row_end-l_row_beg+1,l_col_end-l_col_beg+1, & ONE, a_dev + a_offset, lda, & v_col_dev + (l_col_beg - 1) * & size_of_datatype, 1, & ONE, u_row_dev + (l_row_beg - 1) * & size_of_datatype, 1) endif call timer%stop("cublas") else ! useGPU call timer%start("blas") call PRECISION_GEMV(BLAS_TRANS_OR_CONJ, & l_row_end-l_row_beg+1, l_col_end-l_col_beg+1, & ONE, a_mat(l_row_beg, l_col_beg), lda, & v_row(l_row_beg), 1, & ONE, u_col(l_col_beg), 1) if (i/=j) then call PRECISION_GEMV('N', l_row_end-l_row_beg+1, l_col_end-l_col_beg+1, & ONE, a_mat(l_row_beg,l_col_beg), lda, & v_col(l_col_beg), 1, & ONE, u_row(l_row_beg), 1) endif call timer%stop("blas") endif ! useGPU #endif /* WITH_OPENMP */ enddo ! j=0,i enddo ! i=0,(istep-2)/tile_size if (useGPU) then successCUDA = cuda_memcpy(loc(u_col(1)), u_col_dev, l_cols * size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag: u_col_dev 1", successCUDA) successCUDA = cuda_memcpy(loc(u_row(1)), u_row_dev, l_rows * size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag: u_row_dev 1", successCUDA) endif ! call PRECISION_SYMV('U', l_cols, & ! 1.d0, a_mat, ubound(a_mat,1), & ! v_row, 1, & ! 0.d0, u_col, 1) ! endif ! useGPU #ifdef WITH_OPENMP !$OMP END PARALLEL call timer%stop("OpenMP parallel") do i=0,max_threads-1 u_col(1:l_cols) = u_col(1:l_cols) + uc_p(1:l_cols,i) u_row(1:l_rows) = u_row(1:l_rows) + ur_p(1:l_rows,i) enddo #endif /* WITH_OPENMP */ if (n_stored_vecs > 0) then call timer%start("blas") #if REALCASE == 1 call PRECISION_GEMV('T', & #endif #if COMPLEXCASE == 1 call PRECISION_GEMV('C', & #endif l_rows, 2*n_stored_vecs, & ONE, vu_stored_rows, ubound(vu_stored_rows,dim=1), & v_row, 1, ZERO, aux, 1) call PRECISION_GEMV('N', l_cols, 2*n_stored_vecs, & ONE, uv_stored_cols, ubound(uv_stored_cols,dim=1), & aux, 1, ONE, u_col, 1) call timer%stop("blas") endif endif ! (l_rows>0 .and. l_cols>0) ! Sum up all u_row(:) parts along rows and add them to the u_col(:) parts ! on the processors containing the diagonal ! This is only necessary if u_row has been calculated, i.e. if the ! global tile size is smaller than the global remaining matrix if (tile_size < istep-1) then call elpa_reduce_add_vectors_& &MATH_DATATYPE& &_& &PRECISION & (u_row, ubound(u_row,dim=1), mpi_comm_rows, u_col, ubound(u_col,dim=1), & mpi_comm_cols, istep-1, 1, nblk) endif ! Sum up all the u_col(:) parts, transpose u_col -> u_row if (l_cols>0) then tmp(1:l_cols) = u_col(1:l_cols) #ifdef WITH_MPI call timer%start("mpi_communication") call mpi_allreduce(tmp, u_col, l_cols, MPI_MATH_DATATYPE_PRECISION, & MPI_SUM, mpi_comm_rows, mpierr) call timer%stop("mpi_communication") #else /* WITH_MPI */ u_col = tmp #endif /* WITH_MPI */ endif call elpa_transpose_vectors_& &MATH_DATATYPE& &_& &PRECISION & (u_col, ubound(u_col,dim=1), mpi_comm_cols, u_row, ubound(u_row,dim=1), & mpi_comm_rows, 1, istep-1, 1, nblk) ! calculate u**T * v (same as v**T * (A + VU**T + UV**T) * v ) #if REALCASE == 1 x = 0 if (l_cols>0) & x = dot_product(v_col(1:l_cols),u_col(1:l_cols)) #endif #if COMPLEXCASE == 1 xc = 0 if (l_cols>0) & xc = dot_product(v_col(1:l_cols),u_col(1:l_cols)) #endif #ifdef WITH_MPI call timer%start("mpi_communication") #if REALCASE == 1 call mpi_allreduce(x, vav, 1, MPI_MATH_DATATYPE_PRECISION, MPI_SUM, mpi_comm_cols, mpierr) #endif #if COMPLEXCASE == 1 call mpi_allreduce(xc, vav, 1 , MPI_MATH_DATATYPE_PRECISION, MPI_SUM, mpi_comm_cols, mpierr) #endif call timer%stop("mpi_communication") #else /* WITH_MPI */ #if REALCASE == 1 vav = x #endif #if COMPLEXCASE == 1 vav = xc #endif #endif /* WITH_MPI */ ! store u and v in the matrices U and V ! these matrices are stored combined in one here do j=1,l_rows #if REALCASE == 1 vu_stored_rows(j,2*n_stored_vecs+1) = tau(istep)*v_row(j) vu_stored_rows(j,2*n_stored_vecs+2) = 0.5*tau(istep)*vav*v_row(j) - u_row(j) #endif #if COMPLEXCASE == 1 vu_stored_rows(j,2*n_stored_vecs+1) = conjg(tau(istep))*v_row(j) vu_stored_rows(j,2*n_stored_vecs+2) = 0.5*conjg(tau(istep))*vav*v_row(j) - u_row(j) #endif enddo do j=1,l_cols #if REALCASE == 1 uv_stored_cols(j,2*n_stored_vecs+1) = 0.5*tau(istep)*vav*v_col(j) - u_col(j) uv_stored_cols(j,2*n_stored_vecs+2) = tau(istep)*v_col(j) #endif #if COMPLEXCASE == 1 uv_stored_cols(j,2*n_stored_vecs+1) = 0.5*conjg(tau(istep))*vav*v_col(j) - u_col(j) uv_stored_cols(j,2*n_stored_vecs+2) = conjg(tau(istep))*v_col(j) #endif enddo ! We have calculated another Hauseholder vector, number of implicitly stored increased n_stored_vecs = n_stored_vecs+1 ! If the limit of max_stored_uv is reached, calculate A + VU**T + UV**T if (n_stored_vecs == max_stored_uv .or. istep == 3) then if (useGPU) then successCUDA = cuda_memcpy(vu_stored_rows_dev, loc(vu_stored_rows(1,1)), & max_local_rows * 2 * max_stored_uv * & size_of_datatype, cudaMemcpyHostToDevice) check_memcpy_cuda("tridiag: vu_stored_rows_dev", successCUDA) successCUDA = cuda_memcpy(uv_stored_cols_dev, loc(uv_stored_cols(1,1)), & max_local_cols * 2 * max_stored_uv * & size_of_datatype, cudaMemcpyHostToDevice) check_memcpy_cuda("tridiag: uv_stored_cols_dev", successCUDA) endif do i = 0, (istep-2)/tile_size l_col_beg = i*l_cols_per_tile+1 l_col_end = min(l_cols,(i+1)*l_cols_per_tile) l_row_beg = 1 l_row_end = min(l_rows,(i+1)*l_rows_per_tile) if (l_col_end 0) then a_mat(l_rows,l_cols) = a_mat(l_rows,l_cols) & + dot_product(vu_stored_rows(l_rows,1:2*n_stored_vecs),uv_stored_cols(l_cols,1:2*n_stored_vecs)) end if d_vec(istep-1) = a_mat(l_rows,l_cols) if (useGPU) then !a_dev(l_rows,l_cols) = a_mat(l_rows,l_cols) !successCUDA = cuda_threadsynchronize() !check_memcpy_cuda("tridiag: a_dev 4a5a", successCUDA) successCUDA = cuda_memcpy(a_dev + a_offset, int(loc(a_mat(l_rows, l_cols)),kind=c_size_t), & int(1 * size_of_datatype, kind=c_size_t), cudaMemcpyHostToDevice) check_memcpy_cuda("tridiag: a_dev 4", successCUDA) endif endif enddo ! main cycle over istep=na,3,-1 #if COMPLEXCASE == 1 ! Store e_vec(1) and d_vec(1) if (my_pcol==pcol(2, nblk, np_cols)) then if (my_prow==prow(1, nblk, np_rows)) then ! We use last l_cols value of loop above if(useGPU) then successCUDA = cuda_memcpy(loc(aux3(1)), a_dev + (lda * (l_cols - 1)) * size_of_datatype, & 1 * size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag: a_dev 5", successCUDA) vrl = aux3(1) else !useGPU vrl = a_mat(1,l_cols) endif !useGPU #if REALCASE == 1 call hh_transform_real_& #endif #if COMPLEXCASE == 1 call hh_transform_complex_& #endif &PRECISION & (vrl, CONST_REAL_0_0, xf, tau(2)) e_vec(1) = vrl a_mat(1,l_cols) = 1. ! for consistency only endif #ifdef WITH_MPI call timer%start("mpi_communication") call mpi_bcast(tau(2), 1, MPI_COMPLEX_PRECISION, prow(1, nblk, np_rows), mpi_comm_rows, mpierr) call timer%stop("mpi_communication") #endif /* WITH_MPI */ endif #ifdef WITH_MPI call timer%start("mpi_communication") call mpi_bcast(tau(2), 1, MPI_COMPLEX_PRECISION, pcol(2, nblk, np_cols), mpi_comm_cols, mpierr) call timer%stop("mpi_communication") #endif /* WITH_MPI */ if (my_prow == prow(1, nblk, np_rows) .and. my_pcol == pcol(1, nblk, np_cols)) then if(useGPU) then successCUDA = cuda_memcpy(loc(aux3(1)), a_dev, & 1 * size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag: a_dev 6", successCUDA) d_vec(1) = PRECISION_REAL(aux3(1)) else !useGPU d_vec(1) = PRECISION_REAL(a_mat(1,1)) endif !useGPU endif #endif /* COMPLEXCASE == 1 */ #if REALCASE == 1 ! Store e_vec(1) if (my_prow==prow(1, nblk, np_rows) .and. my_pcol==pcol(2, nblk, np_cols)) then if(useGPU) then successCUDA = cuda_memcpy(loc(e_vec(1)), a_dev + (lda * (l_cols - 1)) * size_of_datatype, & 1 * size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag: a_dev 7", successCUDA) else !useGPU e_vec(1) = a_mat(1,l_cols) ! use last l_cols value of loop above endif !useGPU endif ! Store d_vec(1) if (my_prow==prow(1, nblk, np_rows) .and. my_pcol==pcol(1, nblk, np_cols)) then if(useGPU) then successCUDA = cuda_memcpy(loc(d_vec(1)), a_dev, 1 * size_of_datatype, cudaMemcpyDeviceToHost) check_memcpy_cuda("tridiag: a_dev 8", successCUDA) else !useGPU d_vec(1) = a_mat(1,1) endif !useGPU endif #endif deallocate(tmp, v_row, u_row, v_col, u_col, vu_stored_rows, uv_stored_cols, stat=istat, errmsg=errorMessage) if (istat .ne. 0) then #if REALCASE == 1 print *,"tridiag_real: error when deallocating uv_stored_cols "//errorMessage #endif #if COMPLEXCASE == 1 print *,"tridiag_complex: error when deallocating tmp "//errorMessage #endif stop 1 endif if (useGPU) then ! todo: should we leave a_mat on the device for further use? successCUDA = cuda_free(a_dev) check_dealloc_cuda("tridiag: a_dev 9", successCUDA) successCUDA = cuda_free(v_row_dev) check_dealloc_cuda("tridiag: v_row_dev", successCUDA) successCUDA = cuda_free(u_row_dev) check_dealloc_cuda("tridiag: (u_row_dev", successCUDA) successCUDA = cuda_free(v_col_dev) check_dealloc_cuda("tridiag: v_col_dev", successCUDA) successCUDA = cuda_free(u_col_dev) check_dealloc_cuda("tridiag: u_col_dev ", successCUDA) successCUDA = cuda_free(vu_stored_rows_dev) check_dealloc_cuda("tridiag: vu_stored_rows_dev ", successCUDA) successCUDA = cuda_free(uv_stored_cols_dev) check_dealloc_cuda("tridiag:uv_stored_cols_dev ", successCUDA) endif ! distribute the arrays d_vec and e_vec to all processors #if REALCASE == 1 allocate(tmp(na), stat=istat, errmsg=errorMessage) if (istat .ne. 0) then print *,"tridiag_real: error when allocating tmp "//errorMessage stop 1 endif #endif #if COMPLEXCASE == 1 allocate(tmp_real(na), stat=istat, errmsg=errorMessage) if (istat .ne. 0) then print *,"tridiag_complex: error when allocating tmp_real "//errorMessage stop 1 endif #endif #ifdef WITH_MPI call timer%start("mpi_communication") #if REALCASE == 1 tmp = d_vec call mpi_allreduce(tmp, d_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_rows, mpierr) tmp = d_vec call mpi_allreduce(tmp, d_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_cols, mpierr) tmp = e_vec call mpi_allreduce(tmp, e_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_rows, mpierr) tmp = e_vec call mpi_allreduce(tmp, e_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_cols, mpierr) #endif #if COMPLEXCASE == 1 tmp_real = d_vec call mpi_allreduce(tmp_real, d_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_rows, mpierr) tmp_real = d_vec call mpi_allreduce(tmp_real, d_vec, na, MPI_REAL_PRECISION ,MPI_SUM, mpi_comm_cols, mpierr) tmp_real = e_vec call mpi_allreduce(tmp_real, e_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_rows, mpierr) tmp_real = e_vec call mpi_allreduce(tmp_real, e_vec, na, MPI_REAL_PRECISION, MPI_SUM, mpi_comm_cols, mpierr) #endif call timer%stop("mpi_communication") #endif /* WITH_MPI */ #if REALCASE == 1 deallocate(tmp, stat=istat, errmsg=errorMessage) if (istat .ne. 0) then print *,"tridiag_real: error when deallocating tmp "//errorMessage stop 1 endif #endif #if COMPLEXCASE == 1 deallocate(tmp_real, stat=istat, errmsg=errorMessage) if (istat .ne. 0) then print *,"tridiag_complex: error when deallocating tmp_real "//errorMessage stop 1 endif #endif call timer%stop("tridiag_& &MATH_DATATYPE& &" // & &PRECISION_SUFFIX & ) end subroutine tridiag_& &MATH_DATATYPE& &_& &PRECISION