Commit e1555897 authored by Andreas Marek's avatar Andreas Marek

Remove generalized code under development

parent eadc3079
......@@ -119,11 +119,13 @@ module elpa_api
elpa_eigenvalues_dc, &
elpa_eigenvalues_fc
#if 0
generic, public :: generalized_eigenvectors => & !< method eigenvectors for solving the full generalized eigenvalue problem
elpa_generalized_eigenvectors_d, & !< the eigenvalues and (parts of) the eigenvectors are computed
elpa_generalized_eigenvectors_f, & !< for symmetric real valued / hermitian complex valued matrices
elpa_generalized_eigenvectors_dc, &
elpa_generalized_eigenvectors_fc
#endif
generic, public :: hermitian_multiply => & !< method for a "hermitian" multiplication of matrices a and b
elpa_hermitian_multiply_d, & !< for real valued matrices: a**T * b
......@@ -169,10 +171,12 @@ module elpa_api
procedure(elpa_eigenvalues_dc_i), deferred, public :: elpa_eigenvalues_dc
procedure(elpa_eigenvalues_fc_i), deferred, public :: elpa_eigenvalues_fc
#if 0
procedure(elpa_generalized_eigenvectors_d_i), deferred, public :: elpa_generalized_eigenvectors_d
procedure(elpa_generalized_eigenvectors_f_i), deferred, public :: elpa_generalized_eigenvectors_f
procedure(elpa_generalized_eigenvectors_dc_i), deferred, public :: elpa_generalized_eigenvectors_dc
procedure(elpa_generalized_eigenvectors_fc_i), deferred, public :: elpa_generalized_eigenvectors_fc
#endif
procedure(elpa_hermitian_multiply_d_i), deferred, public :: elpa_hermitian_multiply_d
procedure(elpa_hermitian_multiply_f_i), deferred, public :: elpa_hermitian_multiply_f
......@@ -800,6 +804,7 @@ module elpa_api
end subroutine
end interface
#if 0
!> \brief abstract definition of interface to solve double real generalized eigenvalue problem
!>
!> The dimensions of the matrix a and b (locally ditributed and global), the block-cyclic distribution
......@@ -948,6 +953,7 @@ module elpa_api
integer, optional :: error
end subroutine
end interface
#endif
!> \brief abstract definition of interface to compute C : = A**T * B for double real matrices
......
......@@ -107,11 +107,13 @@ module elpa_impl
procedure, public :: elpa_eigenvalues_dc
procedure, public :: elpa_eigenvalues_fc
#if 0
procedure, public :: elpa_generalized_eigenvectors_d !< public methods to implement the solve step for generalized
!< eigenproblem and real/complex double/single matrices
procedure, public :: elpa_generalized_eigenvectors_f
procedure, public :: elpa_generalized_eigenvectors_dc
procedure, public :: elpa_generalized_eigenvectors_fc
#endif
procedure, public :: elpa_hermitian_multiply_d !< public methods to implement a "hermitian" multiplication of matrices a and b
procedure, public :: elpa_hermitian_multiply_f !< for real valued matrices: a**T * b
......@@ -135,6 +137,7 @@ module elpa_impl
procedure, public :: associate_int => elpa_associate_int !< public method to set some pointers
#if 0
procedure, private :: elpa_transform_generalized_d
procedure, private :: elpa_transform_back_generalized_d
procedure, private :: elpa_transform_generalized_dc
......@@ -146,6 +149,7 @@ module elpa_impl
#ifdef WANT_SINGLE_PRECISION_COMPLEX
procedure, private :: elpa_transform_generalized_fc
procedure, private :: elpa_transform_back_generalized_fc
#endif
#endif
procedure, public :: autotune_setup => elpa_autotune_setup
......@@ -1477,6 +1481,7 @@ module elpa_impl
call elpa_eigenvalues_fc(self, a, ev, error)
end subroutine
#if 0
!********************************************************************************************************
! GENERALIZED EIGENVECTOR PROBLEM
!********************************************************************************************************
......@@ -1906,7 +1911,7 @@ module elpa_impl
call elpa_generalized_eigenvectors_fc(self, a, b, ev, q, sc_desc, error)
end subroutine
#endif
!********************************************************************************************************
......
#if 0
subroutine elpa_transform_generalized_&
&ELPA_IMPL_SUFFIX&
&(self, a, b, sc_desc, error)
......@@ -87,4 +87,5 @@
#endif
end subroutine
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment