### Unify namespace: add interfaces elpa_solve_evp_{real|complex}_2stage

parent 6566e5ff
 .TH "elpa_solve_evp_complex_2stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*- .ad l .nh .SH NAME elpa_solve_evp_complex_2stage \- solve the complex eigenvalue problem with the 2-stage ELPA solver .br .SH SYNOPSIS .br .SS FORTRAN INTERFACE use elpa1 use elpa2 .br .br .RI "success = \fBelpa_solve_evp_real_2stage\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, THIS_COMPLEX_ELPA_KERNEL=THIS_COMPLEX_ELPA_KERNEL)" .br .RI " " .br .RI "With the definintions of the input and output variables:" .br .RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve" .br .RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated" .br .RI "complex*16, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP" .br .RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP" .br .RI "real*8, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues" .br .RI "complex*16, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors" .br .RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors" .br .RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions" .br .RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP" .br .RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "integer, intent(in) \fBmpi_comm_all\fP: communicator for all processes in the processor set involved in ELPA" .br .RI "int \fBTHIS_ELPA_COMPLEX_KERNEL\fp: choose the compute kernel for 2-stage solver" .RI "logical \fBsuccess\fP: return value indicating success or failure" .br .SS C INTERFACE #include "elpa.h" .br #include .br .RI "success = \fBelpa_solve_evp_complex_2stage\fP (\fBint\fP na, \fBint\fP nev, \fB double complex *\fPa, \fBint\fP lda, \fB double *\fPev, \fBdouble complex *\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols, \fBint\fP mpi_comm_all, \fBint\fP THIS_ELPA_COMPLEX_KERNEL);" .br .RI " " .br .RI "With the definintions of the input and output variables:" .br .RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve" .br .RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated" .br .RI "double complex *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP" .br .RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP" .br .RI "double *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues" .br .RI "double complex *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors" .br .RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors" .br .RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions" .br .RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP" .br .RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "int \fBmpi_comm_all\fP: communicator for all processes in the processor set involved in ELPA" .br .RI "int \fBTHIS_ELPA_COMPLEX_KERNEL\fp: choose the compute kernel for 2-stage solver" .br .RI "char *\fBmethod\fP: use 1stage solver if "1stage", use 2stage solver if "2stage", (at the moment) use 2stage solver if "auto" " .RI "int \fBsuccess\fP: return value indicating success (1) or failure (0) .SH DESCRIPTION Solve the complex eigenvalue problem with the 2-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. .br The interface \fBelpa_solve_evp_complex\fP(3) is a more flexible alternative. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBelpa_solve_evp_real_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
 ... ... @@ -85,4 +85,4 @@ Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicator The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBelpa_solve_evp_real_2stage\fP(3) \fBelpa_solve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
 .TH "elpa_solve_evp_real_2stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*- .ad l .nh .SH NAME solve_evp_real_2stage \- solve the real eigenvalue problem with the 2-stage ELPA solver .br .SH SYNOPSIS .br .SS FORTRAN INTERFACE use elpa1 use elpa2 .br .br .RI "success = \fBelpa_solve_evp_real_2stage\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols, mpi_comm_all, THIS_REAL_ELPA_KERNEL, useQr=useQR)" .br .RI " " .br .RI "With the definintions of the input and output variables:" .br .RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve" .br .RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated" .br .RI "real*8, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP" .br .RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP" .br .RI "real*8, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues" .br .RI "real*8, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors" .br .RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors" .br .RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions" .br .RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP" .br .RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "integer, intent(in) \fBmpi_comm_all\fP: communicator for all processes in the processor set involved in ELPA" .br .RI "integer, intent(in), optional \fBTHIS_ELPA_REAL_KERNEL\fp: choose the compute kernel for 2-stage solver" .br .RI "logical, intent(in), optional: \fBuseQR\fP: optional argument; switches to QR-decomposition if set to .true." .RI "logical \fBsuccess\fP: return value indicating success or failure" .br .SS C INTERFACE #include "elpa.h" .br .RI "success = \fBelpa_solve_evp_real_2stage\fP (\fBint\fP na, \fBint\fP nev, \fB double *\fPa, \fBint\fP lda, \fB double *\fPev, \fBdouble *\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols, \fBint\fP mpi_comm_all, \fBint\fP THIS_ELPA_REAL_KERNEL, \fBint\fP useQr);" .br .RI " " .br .RI "With the definintions of the input and output variables:" .br .RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve" .br .RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated" .br .RI "double *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP" .br .RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP" .br .RI "double *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues" .br .RI "double *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors" .br .RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors" .br .RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions" .br .RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP" .br .RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)" .br .RI "int \fBmpi_comm_all\fP: communicator for all processes in the processor set involved in ELPA" .br .RI "int \fBTHIS_ELPA_REAL_KERNEL\fp: choose the compute kernel for 2-stage solver" .br .RI "int \fBuseQR\fP: if set to 1 switch to QR-decomposition" .RI "int \fBsuccess\fP: return value indicating success (1) or failure (0) .SH DESCRIPTION Solve the real eigenvalue problem with the 2-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. .br The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBelpa_solve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
 ... ... @@ -49,4 +49,4 @@ Old, deprecated interface, which will be deleted at some point. Use \fBsolve_evp Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_1stage_double\fP(3) \fBelpa_solve_evp_real_1stage_single\fP(3) \fBelpa_solve_evp_complex_1stage_single\fP(3) \fBelpa_solve_evp_real_2stage_double\fP(3) \fBelpa_solve_evp_real_2stage_single\fP(3) \fBelpa_solve_evp_complex_2stage_double\fP(3) \fBelpa_solve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_double\fP(3) \fBelpa_solve_evp_real_single\fP(3) \fBelpa_solve_evp_complex_double\fP(3) \fBelpa_solve_evp_complex_single\fP(3) \fBelpa_solve_evp_real_1stage_double\fP(3) \fBelpa_solve_evp_real_1stage_single\fP(3) \fBelpa_solve_evp_complex_1stage_single\fP(3) \fBelpa_solve_evp_real_2stage_double\fP(3) \fBelpa_solve_evp_real_2stage_single\fP(3) \fBelpa_solve_evp_complex_2stage_double\fP(3) \fBelpa_solve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1)
 ... ... @@ -85,4 +85,4 @@ use elpa1 Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBsolve_evp_real_1stage_double\fP(3) \fBsolve_evp_real_1stage_single\fP(3) \fBsolve_evp_complex_1stage_single\fP(3) \fBsolve_evp_real_2stage_double\fP(3) \fBsolve_evp_real_2stage_single\fP(3) \fBsolve_evp_complex_2stage_double\fP(3) \fBsolve_evp_complex_2stage_single\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_double\fP(3) \fBelpa_solve_evp_real_single\fP(3) \fBelpa_solve_evp_complex_double\fP(3) \fBelpa_solve_evp_complex_single\fP(3) \fBsolve_evp_real_1stage_double\fP(3) \fBsolve_evp_real_1stage_single\fP(3) \fBsolve_evp_complex_1stage_single\fP(3) \fBsolve_evp_real_2stage_double\fP(3) \fBsolve_evp_real_2stage_single\fP(3) \fBsolve_evp_complex_2stage_double\fP(3) \fBsolve_evp_complex_2stage_single\fP(3) \fBprint_available_elpa2_kernels\fP(1)
 ... ... @@ -3,6 +3,7 @@ .nh .SH NAME solve_evp_complex_2stage \- solve the complex eigenvalue problem with the 2-stage ELPA solver Old, deprecated interface. It is recommended to use \fBelpa_solve_evp_complex_2stage\fP.(3) .br .SH SYNOPSIS ... ... @@ -96,4 +97,4 @@ Solve the complex eigenvalue problem with the 2-stage solver. The ELPA communica The interface \fBelpa_solve_evp_complex\fP(3) is a more flexible alternative. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBelpa2_print_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBelpa_solve_evp_real_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
 ... ... @@ -49,4 +49,4 @@ Old, deprecated interface, which will be deleted at some point. Use \fBsolve_evp Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_1stage_single\fP(3) \fBelpa_solve_evp_complex_1stage_double\fP(3) \fBelpa_solve_evp_complex_1stage_single\fP(3) \fBelpa_solve_evp_real_2stage_double\fP(3) \fBelpa_solve_evp_real_2stage_single\fP(3) \fBelpa_solve_evp_complex_2stage_double\fP(3) \fBelpa_solve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_double\fP(3) \fBelpa_solve_evp_real_single\fP(3) \fBelpa_solve_evp_complex_doulbe\fP(3) \fBelpa_solve_evp_complex_single\fP(3) \fBelpa_solve_evp_real_1stage_single\fP(3) \fBelpa_solve_evp_complex_1stage_double\fP(3) \fBelpa_solve_evp_complex_1stage_single\fP(3) \fBelpa_solve_evp_real_2stage_double\fP(3) \fBelpa_solve_evp_real_2stage_single\fP(3) \fBelpa_solve_evp_complex_2stage_double\fP(3) \fBelpa_solve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1)
 ... ... @@ -86,4 +86,4 @@ Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicator The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBelpa_solve_evp_real_2stage\fP(3) \fBelpa_solve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
 ... ... @@ -3,6 +3,7 @@ .nh .SH NAME solve_evp_real_2stage \- solve the real eigenvalue problem with the 2-stage ELPA solver Old, deprecated interface. It is recommended to use \fBelpa_solve_evp_real_2stage\fP(3) .br .SH SYNOPSIS ... ... @@ -96,4 +97,4 @@ Solve the real eigenvalue problem with the 2-stage solver. The ELPA communicator The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative. .br .SH "SEE ALSO" \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1) \fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBelpa_solve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)