Correct man pages: wrong program name used

parent dda7b03a
...@@ -56,4 +56,4 @@ use elpa1 ...@@ -56,4 +56,4 @@ use elpa1
All ELPA routines need MPI communicators for communicating within rows or columns of processes. These communicators are created from the \fBmpi_comm_global\fP communicator. It is assumed that the matrix used in ELPA is distributed with \fBmy_prow\fP rows and \fBmy_pcol\fP columns on the calling process. This function has to be envoked by all involved processes before any other calls to ELPA routines. All ELPA routines need MPI communicators for communicating within rows or columns of processes. These communicators are created from the \fBmpi_comm_global\fP communicator. It is assumed that the matrix used in ELPA is distributed with \fBmy_prow\fP rows and \fBmy_pcol\fP columns on the calling process. This function has to be envoked by all involved processes before any other calls to ELPA routines.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBsolve_evp_real\fP(3) \fBsolve_evp_complex\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBsolve_evp_real\fP(3) \fBsolve_evp_complex\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
...@@ -58,4 +58,4 @@ use elpa1 ...@@ -58,4 +58,4 @@ use elpa1
All ELPA routines need MPI communicators for communicating within rows or columns of processes. These communicators are created from the \fBmpi_comm_global\fP communicator. It is assumed that the matrix used in ELPA is distributed with \fBmy_prow\fP rows and \fBmy_pcol\fP columns on the calling process. This function has to be envoked by all involved processes before any other calls to ELPA routines. All ELPA routines need MPI communicators for communicating within rows or columns of processes. These communicators are created from the \fBmpi_comm_global\fP communicator. It is assumed that the matrix used in ELPA is distributed with \fBmy_prow\fP rows and \fBmy_pcol\fP columns on the calling process. This function has to be envoked by all involved processes before any other calls to ELPA routines.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_real\fP(3) \fBsolve_evp_complex\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_real\fP(3) \fBsolve_evp_complex\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "print_available_elpa2_kernels" 1 "Wed Dec 2 2015" "ELPA" \" -*- nroff -*- .TH "elpa2_print_kernels" 1 "Wed Dec 2 2015" "ELPA" \" -*- nroff -*-
.ad l .ad l
.nh .nh
.SH NAME .SH NAME
print_available_elpa2_kernels \- Provide information which ELPA2 kernels are available on this system\&. elpa2_print_kernels \- Provide information which ELPA2 kernels are available on this system\&.
.SH SYNOPSIS .SH SYNOPSIS
.br .br
print_available_elpa2_kernels elpa2_print_kernels
.br .br
.SH "Description" .SH "Description"
.PP .PP
Provide information which ELPA2 kernels are available on this system. Provide information which ELPA2 kernels are available on this system.
.br .br
It is possible to configure ELPA2 such, that different compute intensive 'ELPA2 kernels' can be choosen at runtime. The service binary print_available_elpa2_kernels will query the library and tell whether ELPA2 has been configured in this way, and if this is the case which kernels can be choosen at runtime. It will furthermore detail whether ELPA has been configured with OpenMP support. It is possible to configure ELPA2 such, that different compute intensive 'ELPA2 kernels' can be choosen at runtime. The service binary elpa2_print_kernels will query the library and tell whether ELPA2 has been configured in this way, and if this is the case which kernels can be choosen at runtime. It will furthermore detail whether ELPA has been configured with OpenMP support.
.SH "Options" .SH "Options"
.PP .PP
.br .br
......
...@@ -48,4 +48,4 @@ use elpa1 ...@@ -48,4 +48,4 @@ use elpa1
Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
...@@ -85,4 +85,4 @@ use elpa1 ...@@ -85,4 +85,4 @@ use elpa1
Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
...@@ -88,4 +88,4 @@ use elpa2 ...@@ -88,4 +88,4 @@ use elpa2
Solve the complex eigenvalue problem with the 2-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. Solve the complex eigenvalue problem with the 2-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
...@@ -48,4 +48,4 @@ use elpa1 ...@@ -48,4 +48,4 @@ use elpa1
Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
...@@ -83,4 +83,4 @@ use elpa1 ...@@ -83,4 +83,4 @@ use elpa1
Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
...@@ -90,4 +90,4 @@ use elpa2 ...@@ -90,4 +90,4 @@ use elpa2
Solve the real eigenvalue problem with the 2-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver. Solve the real eigenvalue problem with the 2-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBget_elpa_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br .br
.SH "SEE ALSO" .SH "SEE ALSO"
\fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBprint_available_elpa2_kernels\fP(1) \fBget_elpa_communicators\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment