.RI "With the definitions of the input and output variables:"
.br
.RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "double complex *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBwantDebug\fP: if 1, print more debug information in case of an error"
.br
.RI "int \fBsuccess\fP: return value indicating success (1) or failure (0)
.SH DESCRIPTION
Does a Cholesky factorization of a complex, hermitian matrix. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP.
.br
This function is part of the legacy API of the ELPA library. Better use the current API.