Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
elpa
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
11
Issues
11
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
Operations
Operations
Incidents
Environments
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
elpa
elpa
Commits
72daaf22
Commit
72daaf22
authored
Mar 14, 2018
by
Andreas Marek
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Introduce generalized_eigenvalues
parent
4db1a6fb
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
236 additions
and
1 deletion
+236
-1
src/elpa_api.F90
src/elpa_api.F90
+11
-0
src/elpa_api_math_template.F90
src/elpa_api_math_template.F90
+57
-1
src/elpa_impl.F90
src/elpa_impl.F90
+6
-0
src/elpa_impl_math_template.F90
src/elpa_impl_math_template.F90
+162
-0
No files found.
src/elpa_api.F90
View file @
72daaf22
...
...
@@ -125,6 +125,12 @@ module elpa_api
elpa_generalized_eigenvectors_dc
,
&
elpa_generalized_eigenvectors_fc
generic
,
public
::
generalized_eigenvalues
=>
&
!< method eigenvectors for solving the full generalized eigenvalue problem
elpa_generalized_eigenvalues_d
,
&
!< only the eigenvalues
elpa_generalized_eigenvalues_f
,
&
!< for symmetric real valued / hermitian complex valued matrices
elpa_generalized_eigenvalues_dc
,
&
elpa_generalized_eigenvalues_fc
generic
,
public
::
hermitian_multiply
=>
&
!< method for a "hermitian" multiplication of matrices a and b
elpa_hermitian_multiply_d
,
&
!< for real valued matrices: a**T * b
elpa_hermitian_multiply_dc
,
&
!< for complex valued matrices a**H * b
...
...
@@ -174,6 +180,11 @@ module elpa_api
procedure
(
elpa_generalized_eigenvectors_dc_i
),
deferred
,
public
::
elpa_generalized_eigenvectors_dc
procedure
(
elpa_generalized_eigenvectors_fc_i
),
deferred
,
public
::
elpa_generalized_eigenvectors_fc
procedure
(
elpa_generalized_eigenvalues_d_i
),
deferred
,
public
::
elpa_generalized_eigenvalues_d
procedure
(
elpa_generalized_eigenvalues_f_i
),
deferred
,
public
::
elpa_generalized_eigenvalues_f
procedure
(
elpa_generalized_eigenvalues_dc_i
),
deferred
,
public
::
elpa_generalized_eigenvalues_dc
procedure
(
elpa_generalized_eigenvalues_fc_i
),
deferred
,
public
::
elpa_generalized_eigenvalues_fc
procedure
(
elpa_hermitian_multiply_d_i
),
deferred
,
public
::
elpa_hermitian_multiply_d
procedure
(
elpa_hermitian_multiply_f_i
),
deferred
,
public
::
elpa_hermitian_multiply_f
procedure
(
elpa_hermitian_multiply_dc_i
),
deferred
,
public
::
elpa_hermitian_multiply_dc
...
...
src/elpa_api_math_template.F90
View file @
72daaf22
...
...
@@ -112,7 +112,6 @@
end
interface
!> \brief abstract definition of interface to solve a generalized eigenvalue problem
!>
!> The dimensions of the matrix a and b (locally ditributed and global), the block-cyclic distribution
...
...
@@ -176,6 +175,63 @@
!> \brief abstract definition of interface to solve a generalized eigenvalue problem
!>
!> The dimensions of the matrix a and b (locally ditributed and global), the block-cyclic distribution
!> blocksize, the number of eigenvectors
!> to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
!> with the class method "setup"
!>
!> It is possible to change the behaviour of the method by setting tunable parameters with the
!> class method "set"
!> Parameters
!> \details
!> \param self class(elpa_t), the ELPA object
#if ELPA_IMPL_SUFFIX == d
!> \param a double real matrix a: defines the problem to solve
!> \param b double real matrix b: defines the problem to solve
!> \param ev double real: on output stores the eigenvalues
#endif
#if ELPA_IMPL_SUFFIX == f
!> \param a single real matrix a: defines the problem to solve
!> \param b single real matrix b: defines the problem to solve
!> \param ev single real: on output stores the eigenvalues
#endif
#if ELPA_IMPL_SUFFIX == dc
!> \param a double complex matrix a: defines the problem to solve
!> \param b double complex matrix b: defines the problem to solve
!> \param ev double real: on output stores the eigenvalues
#endif
#if ELPA_IMPL_SUFFIX == fc
!> \param a single complex matrix a: defines the problem to solve
!> \param b single complex matrix b: defines the problem to solve
!> \param ev single real: on output stores the eigenvalues
#endif
!> \param is_already_decomposed logical, input: is it repeated call with the same b (decomposed in the fist call)?
!> \result error integer, optional : error code, which can be queried with elpa_strerr
abstract
interface
subroutine
elpa_generalized_eigenvalues_
&
&
ELPA_IMPL_SUFFIX
&
&
_
i
(
self
,
a
,
b
,
ev
,
is_already_decomposed
,
error
)
use
iso_c_binding
use
elpa_constants
import
elpa_t
implicit
none
class
(
elpa_t
)
::
self
#ifdef USE_ASSUMED_SIZE
MATH_DATATYPE
(
kind
=
C_DATATYPE_KIND
)
::
a
(
self
%
local_nrows
,
*
),
b
(
self
%
local_nrows
,
*
)
#else
MATH_DATATYPE
(
kind
=
C_DATATYPE_KIND
)
::
a
(
self
%
local_nrows
,
self
%
local_ncols
),
b
(
self
%
local_nrows
,
self
%
local_ncols
)
#endif
real
(
kind
=
C_REAL_DATATYPE
)
::
ev
(
self
%
na
)
logical
::
is_already_decomposed
integer
,
optional
::
error
end
subroutine
end
interface
!> \brief abstract definition of interface to compute C : = A**T * B
!> where A is a square matrix (self%a,self%na) which is optionally upper or lower triangular
!> B is a (self%na,ncb) matrix
...
...
src/elpa_impl.F90
View file @
72daaf22
...
...
@@ -113,6 +113,12 @@ module elpa_impl
procedure
,
public
::
elpa_generalized_eigenvectors_dc
procedure
,
public
::
elpa_generalized_eigenvectors_fc
procedure
,
public
::
elpa_generalized_eigenvalues_d
!< public methods to implement the solve step for generalized
!< eigenproblem and real/complex double/single matrices
procedure
,
public
::
elpa_generalized_eigenvalues_f
procedure
,
public
::
elpa_generalized_eigenvalues_dc
procedure
,
public
::
elpa_generalized_eigenvalues_fc
procedure
,
public
::
elpa_hermitian_multiply_d
!< public methods to implement a "hermitian" multiplication of matrices a and b
procedure
,
public
::
elpa_hermitian_multiply_f
!< for real valued matrices: a**T * b
procedure
,
public
::
elpa_hermitian_multiply_dc
!< for complex valued matrices: a**H * b
...
...
src/elpa_impl_math_template.F90
View file @
72daaf22
...
...
@@ -490,6 +490,168 @@
end
subroutine
!> \brief elpa_generalized_eigenvalues_d: class method to solve the eigenvalue problem
!>
!> The dimensions of the matrix a (locally ditributed and global), the block-cyclic distribution
!> blocksize, the number of eigenvectors
!> to be computed and the MPI communicators are already known to the object and MUST be set BEFORE
!> with the class method "setup"
!>
!> It is possible to change the behaviour of the method by setting tunable parameters with the
!> class method "set"
!>
!> Parameters
!>
!> \param a Distributed matrix for which eigenvalues are to be computed.
!> Distribution is like in Scalapack.
!> The full matrix must be set (not only one half like in scalapack).
!> Destroyed on exit (upper and lower half).
!>
!> \param b Distributed matrix, part of the generalized eigenvector problem, or the
!> product of a previous call to this function (see is_already_decomposed).
!> Distribution is like in Scalapack.
!> If is_already_decomposed is false, on exit replaced by the decomposition
!>
!> \param ev On output: eigenvalues of a, every processor gets the complete set
!>
!> \param is_already_decomposed has to be set to .false. for the first call with a given b and .true. for
!> each subsequent call with the same b, since b then already contains
!> decomposition and thus the decomposing step is skipped
!>
!> \param error integer, optional: returns an error code, which can be queried with elpa_strerr
subroutine
elpa_generalized_eigenvalues_
&
&
ELPA_IMPL_SUFFIX
&
&
(
self
,
a
,
b
,
ev
,
is_already_decomposed
,
error
)
use
elpa2_impl
use
elpa1_impl
use
elpa_utilities
,
only
:
error_unit
use
iso_c_binding
class
(
elpa_impl_t
)
::
self
#ifdef USE_ASSUMED_SIZE
MATH_DATATYPE
(
kind
=
C_DATATYPE_KIND
)
::
a
(
self
%
local_nrows
,
*
),
b
(
self
%
local_nrows
,
*
)
#else
MATH_DATATYPE
(
kind
=
C_DATATYPE_KIND
)
::
a
(
self
%
local_nrows
,
self
%
local_ncols
),
b
(
self
%
local_nrows
,
self
%
local_ncols
)
#endif
real
(
kind
=
C_REAL_DATATYPE
)
::
ev
(
self
%
na
)
logical
::
is_already_decomposed
integer
,
optional
::
error
integer
::
error_l
integer
(
kind
=
c_int
)
::
solver
logical
::
success_l
#if defined(INCLUDE_ROUTINES)
call
self
%
elpa_transform_generalized_
&
&
ELPA_IMPL_SUFFIX
&
&
(
a
,
b
,
is_already_decomposed
,
error_l
)
#endif
if
(
present
(
error
))
then
error
=
error_l
else
if
(
error_l
.ne.
ELPA_OK
)
then
write
(
error_unit
,
'(a)'
)
"ELPA: Error in transform_generalized() and you did not check for errors!"
endif
call
self
%
get
(
"solver"
,
solver
)
if
(
solver
.eq.
ELPA_SOLVER_1STAGE
)
then
#if defined(INCLUDE_ROUTINES)
success_l
=
elpa_solve_evp_
&
&
MATH_DATATYPE
&
&
_
1
stage_
&
&
PRECISION
&
&
_
impl
(
self
,
a
,
ev
)
#endif
else
if
(
solver
.eq.
ELPA_SOLVER_2STAGE
)
then
#if defined(INCLUDE_ROUTINES)
success_l
=
elpa_solve_evp_
&
&
MATH_DATATYPE
&
&
_
2
stage_
&
&
PRECISION
&
&
_
impl
(
self
,
a
,
ev
)
#endif
else
print
*
,
"unknown solver"
stop
endif
if
(
present
(
error
))
then
if
(
success_l
)
then
error
=
ELPA_OK
else
error
=
ELPA_ERROR
endif
else
if
(
.not.
success_l
)
then
write
(
error_unit
,
'(a)'
)
"ELPA: Error in solve() and you did not check for errors!"
endif
#endif
end
subroutine
#ifdef REALCASE
#ifdef DOUBLE_PRECISION_REAL
!c> void elpa_generalized_eigenvalues_d(elpa_t handle, double *a, double *b, double *ev,
!c> int is_already_decomposed, int *error);
#endif
#ifdef SINGLE_PRECISION_REAL
!c> void elpa_generalized_eigenvalues_f(elpa_t handle, float *a, float *b, float *ev,
!c> int is_already_decomposed, int *error);
#endif
#endif
#ifdef COMPLEXCASE
#ifdef DOUBLE_PRECISION_COMPLEX
!c> void elpa_generalized_eigenvalues_dc(elpa_t handle, double complex *a, double complex *b, double *ev,
!c> int is_already_decomposed, int *error);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
!c> void elpa_generalized_eigenvalues_fc(elpa_t handle, float complex *a, float complex *b, float *ev,
!c> int is_already_decomposed, int *error);
#endif
#endif
subroutine
elpa_generalized_eigenvalues_
&
&
ELPA_IMPL_SUFFIX
&
&
_
c
(
handle
,
a_p
,
b_p
,
ev_p
,
is_already_decomposed
,
error
)
&
#ifdef REALCASE
#ifdef DOUBLE_PRECISION_REAL
bind
(
C
,
name
=
"elpa_generalized_eigenvalues_d"
)
#endif
#ifdef SINGLE_PRECISION_REAL
bind
(
C
,
name
=
"elpa_generalized_eigenvalues_f"
)
#endif
#endif
#ifdef COMPLEXCASE
#ifdef DOUBLE_PRECISION_COMPLEX
bind
(
C
,
name
=
"elpa_generalized_eigenvalues_dc"
)
#endif
#ifdef SINGLE_PRECISION_COMPLEX
bind
(
C
,
name
=
"elpa_generalized_eigenvalues_fc"
)
#endif
#endif
type
(
c_ptr
),
intent
(
in
),
value
::
handle
,
a_p
,
b_p
,
ev_p
integer
(
kind
=
c_int
),
intent
(
in
),
value
::
is_already_decomposed
integer
(
kind
=
c_int
),
optional
,
intent
(
in
)
::
error
MATH_DATATYPE
(
kind
=
C_DATATYPE_KIND
),
pointer
::
a
(:,
:),
b
(:,
:)
real
(
kind
=
C_REAL_DATATYPE
),
pointer
::
ev
(:)
logical
::
is_already_decomposed_fortran
type
(
elpa_impl_t
),
pointer
::
self
call
c_f_pointer
(
handle
,
self
)
call
c_f_pointer
(
a_p
,
a
,
[
self
%
local_nrows
,
self
%
local_ncols
])
call
c_f_pointer
(
b_p
,
b
,
[
self
%
local_nrows
,
self
%
local_ncols
])
call
c_f_pointer
(
ev_p
,
ev
,
[
self
%
na
])
if
(
is_already_decomposed
.eq.
0
)
then
is_already_decomposed_fortran
=
.false.
else
is_already_decomposed_fortran
=
.true.
end
if
call
elpa_generalized_eigenvalues_
&
&
ELPA_IMPL_SUFFIX
&
&
(
self
,
a
,
b
,
ev
,
is_already_decomposed_fortran
,
error
)
end
subroutine
!> \brief elpa_hermitian_multiply_d: class method to perform C : = A**T * B
!> where A is a square matrix (self%na,self%na) which is optionally upper or lower triangular
!> B is a (self%na,ncb) matrix
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment