Commit 6566e5ff authored by Andreas Marek's avatar Andreas Marek

Unify namespace: add interfaces elpa_solve_evp_{real|complex}_1stage

parent 16d6c7f6
......@@ -3,13 +3,15 @@ Thus these features are considered as deprecated and will be removed at some poi
from the ELPA library.
A) Deprecated interfaces:
Deprecated interface Replacement
===================================================
get_elpa_row_col_coms elpa_get_communicators
get_elpa_communicators elpa_get_communicators
solve_evp_real solve_evp_real_1stage
solve_evp_complex solve_evp_complex_1stage
solve_evp_real elpa_solve_evp_real_1stage
solve_evp_complex elpa_solve_evp_complex_1stage
solve_evp_real_1stage elpa_solve_evp_real_1stage
solve_evp_complex_1stage elpa_solve_evp_complex_1stage
mult_at_b_real elpa_mult_at_b_real
mult_ah_b_complex elpa_mult_ah_b_complex
invert_trm_real elpa_invert_trm_real
......
......@@ -249,6 +249,8 @@ dist_man_MANS = \
man/solve_evp_complex_1stage_double.3 \
man/solve_evp_real_2stage_double.3 \
man/solve_evp_complex_2stage_double.3 \
man/elpa_solve_evp_real_1stage_double.3 \
man/elpa_solve_evp_complex_1stage_double.3 \
man/get_elpa_row_col_comms.3 \
man/get_elpa_communicators.3 \
man/elpa_mult_at_b_real_double.3 \
......@@ -268,13 +270,15 @@ dist_man_MANS = \
if WANT_SINGLE_PRECISION_REAL
dist_man_MANS += man/solve_evp_real_1stage_single.3 \
man/solve_evp_real_2stage_single.3
man/elpa_solve_evp_real_1stage_single.3 \
man/solve_evp_real_2stage_single.3
endif
if WANT_SINGLE_PRECISION_COMPLEX
dist_man_MANS += man/solve_evp_complex_1stage_single.3 \
man/solve_evp_complex_2stage_single.3
man/elpa_solve_evp_complex_1stage_single.3 \
man/solve_evp_complex_2stage_single.3
endif
#needed?
......
.TH "elpa_solve_evp_complex_1stage_double" 3 "Thu Mar 17 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
elpa_solve_evp_complex_1stage_double \- solve the double-precision complex eigenvalue problem with the 1-stage ELPA solver
.br
.SH SYNOPSIS
.br
.SS FORTRAN INTERFACE
use elpa1
.br
.br
.RI "success = \fBelpa_solve_evp_complex_1stage_double\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "complex*16, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "real*8, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues"
.br
.RI "complex*16, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors"
.br
.RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "logical \fBsuccess\fP: return value indicating success or failure"
.br
.SS C INTERFACE
#include "elpa.h"
.br
#include <complex.h>
.br
.RI "success = \fBelpa_solve_evp_complex_1stage_double_precision\fP (\fBint\fP na, \fBint\fP nev, \fB double complex *\fPa, \fBint\fP lda, \fB double *\fPev, \fBdouble complex*\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols);"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "double complex *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "double *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues"
.br
.RI "double complex *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors"
.br
.RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBsuccess\fP: return value indicating success (1) or failure (0)
.SH DESCRIPTION
Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_1stage_double\fP(3) \fBelpa_solve_evp_real_1stage_single\fP(3) \fBelpa_solve_evp_complex_1stage_single\fP(3) \fBelpa_solve_evp_real_2stage_double\fP(3) \fBelpa_solve_evp_real_2stage_single\fP(3) \fBelpa_solve_evp_complex_2stage_double\fP(3) \fBelpa_solve_evp_complex_2stage_single\fP(3) \fBprint_available_elpa2_kernels\fP(1)
.TH "elpa_solve_evp_complex_1stage_single" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
elpa_solve_evp_complex_1stage_single \- solve the complex eigenvalue problem with the 1-stage ELPA solver
.br
.SH SYNOPSIS
.br
.SS FORTRAN INTERFACE
use elpa1
.br
.br
.RI "success = \fBelpa_solve_evp_complex_1stage_single\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "complex*8, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "real*4, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues"
.br
.RI "complex*8, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors"
.br
.RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "logical \fBsuccess\fP: return value indicating success or failure"
.br
.SS C INTERFACE
#include "elpa.h"
.br
#include <complex.h>
.br
.RI "success = \fBelpa_solve_evp_complex_1stage_single\fP (\fBint\fP na, \fBint\fP nev, \fB complex *\fPa, \fBint\fP lda, \fB float *\fPev, \fBcomplex*\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols);"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "complex *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "float *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues"
.br
.RI "complex *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors"
.br
.RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBsuccess\fP: return value indicating success (1) or failure (0)
.SH DESCRIPTION
Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br
The interface \fBelpa_solve_evp_complex_single\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_double\fP(3) \fBelpa_solve_evp_real_single\fP(3) \fBelpa_solve_evp_complex_double\fP(3) \fBelpa_solve_evp_complex_single\fP(3) \fBelpa_solve_evp_real_1stage_double\fP(3) \fBelpa_solve_evp_real_1stage_single\fP(3) \fBsolve_evp_real_2stage_double\fP(3) \fBsolve_evp_real_2stage_single\fP(3) \fBsolve_evp_complex_2stage_double\fP(3) \fBsolve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "elpa_solve_evp_real_1stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
elpa_solve_evp_real_1stage \- solve the real eigenvalue problem with the 1-stage ELPA solver
.br
.SH SYNOPSIS
.br
.SS FORTRAN INTERFACE
use elpa1
.br
.br
.RI "success = \fBelpa_solve_evp_real_1stage\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "real*8, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "real*8, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues"
.br
.RI "real*8, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors"
.br
.RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "logical \fBsuccess\fP: return value indicating success or failure"
.br
.SS C INTERFACE
#include "elpa.h"
.br
.RI "success = \fBelpa_solve_evp_real_1stage\fP (\fBint\fP na, \fBint\fP nev, \fB double *\fPa, \fBint\fP lda, \fB double *\fPev, \fBdouble *\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols);"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "double *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "double *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues"
.br
.RI "double *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors"
.br
.RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBsuccess\fP: return value indicating success (1) or failure (0)
.SH DESCRIPTION
Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br
The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "elpa_solve_evp_real_1stage_double" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
elpa_solve_evp_real_1stage_double \- solve the real eigenvalue problem with the 1-stage ELPA solver
.br
.SH SYNOPSIS
.br
.SS FORTRAN INTERFACE
use elpa1
.br
.br
.RI "success = \fBelpa_solve_evp_real_1stage_double\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "real*8, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "real*8, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues"
.br
.RI "real*8, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors"
.br
.RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "logical \fBsuccess\fP: return value indicating success or failure"
.br
.SS C INTERFACE
#include "elpa.h"
.br
.RI "success = \fBelpa_solve_evp_real_1stage_double\fP (\fBint\fP na, \fBint\fP nev, \fB double *\fPa, \fBint\fP lda, \fB double *\fPev, \fBdouble *\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols);"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "double *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "double *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues"
.br
.RI "double *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors"
.br
.RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBsuccess\fP: return value indicating success (1) or failure (0)
.SH DESCRIPTION
Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br
The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_double\fP(3) \fBelpa_solve_evp_real_single\fP(3) \fBelpa_solve_evp_complex_double\fP(3) \fBelpa_solve_evp_complex_single\fP(3) \fBelpa_solve_evp_complex_1stage_double\fP(3) \fBelpa_solve_evp_complex_1stage_single \fBsolve_evp_real_2stage_double\fP(3) \fBsolve_evp_real_2stage_single\fP(3) \fBsolve_evp_complex_2stage_double\fP(3) \fBsolve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "elpa_solve_evp_real_1stage_single" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
elpa_solve_evp_real_1stage_single \- solve the real eigenvalue problem with the 1-stage ELPA solver
.br
.SH SYNOPSIS
.br
.SS FORTRAN INTERFACE
use elpa1
.br
.br
.RI "success = \fBelpa_solve_evp_real_1stage_single\fP (na, nev, a(lda,matrixCols), ev(nev), q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "integer, intent(in) \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "integer, intent(in) \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "real*4, intent(inout) \fBa\fP: locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "integer, intent(in) \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "real*4, intent(inout) \fBev\fP: on output the first \fBnev\fP computed eigenvalues"
.br
.RI "real*4, intent(inout) \fBq\fP: on output the first \fBnev\fP computed eigenvectors"
.br
.RI "integer, intent(in) \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "integer, intent(in) \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "integer, intent(in) \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "integer, intent(in) \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "integer, intent(in) \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "logical \fBsuccess\fP: return value indicating success or failure"
.br
.SS C INTERFACE
#include "elpa.h"
.br
.RI "success = \fBelpa_solve_evp_real_1stage_single\fP (\fBint\fP na, \fBint\fP nev, \fB float *\fPa, \fBint\fP lda, \fB float *\fPev, \fBfloat *\fPq, \fBint\fP ldq, \fBint\fP nblk, \fBint\fP matrixCols, \fBint\fP mpi_comm_rows, \fBint\fP mpi_comm_cols);"
.br
.RI " "
.br
.RI "With the definintions of the input and output variables:"
.br
.RI "int \fBna\fP: global dimension of quadratic matrix \fBa\fP to solve"
.br
.RI "int \fBnev\fP: number of eigenvalues to be computed; the first \fBnev\fP eigenvalules are calculated"
.br
.RI "float *\fBa\fP: pointer to locally distributed part of the matrix \fBa\fP. The local dimensions are \fBlda\fP x \fBmatrixCols\fP"
.br
.RI "int \fBlda\fP: leading dimension of locally distributed matrix \fBa\fP"
.br
.RI "float *\fBev\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvalues"
.br
.RI "float *\fBq\fP: pointer to memory containing on output the first \fBnev\fP computed eigenvectors"
.br
.RI "int \fBldq\fP: leading dimension of matrix \fBq\fP which stores the eigenvectors"
.br
.RI "int \fBnblk\fP: blocksize of block cyclic distributin, must be the same in both directions"
.br
.RI "int \fBmatrixCols\fP: number of columns of locally distributed matrices \fBa\fP and \fBq\fP"
.br
.RI "int \fBmpi_comm_rows\fP: communicator for communication in rows. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBmpi_comm_cols\fP: communicator for communication in colums. Constructed with \fBelpa_get_communicators\fP(3)"
.br
.RI "int \fBsuccess\fP: return value indicating success (1) or failure (0)
.SH DESCRIPTION
Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicators \fBmpi_comm_rows\fP and \fBmpi_comm_cols\fP are obtained with the \fBelpa_get_communicators\fP(3) function. The distributed quadratic marix \fBa\fP has global dimensions \fBna\fP x \fBna\fP, and a local size \fBlda\fP x \fBmatrixCols\fP. The solver will compute the first \fBnev\fP eigenvalues, which will be stored on exit in \fBev\fP. The eigenvectors corresponding to the eigenvalues will be stored in \fBq\fP. All memory of the arguments must be allocated outside the call to the solver.
.br
The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real_double\fP(3) \fBelpa_solve_evp_real_single\fP(3) \fBelpa_solve_evp_complex_double\fP(3) \fBelpa_solve_evp_complex_single\fP(3) \fBelpa_solve_evp_complex_1stage_double\fP(3) \fBelpa_solve_evp_complex_1stage_single \fBsolve_evp_real_2stage_double\fP(3) \fBsolve_evp_real_2stage_single\fP(3) \fBsolve_evp_complex_2stage_double\fP(3) \fBsolve_evp_complex_2stage_single\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "solve_evp_complex_1stage" 3 "Wed Dec 2 2015" "ELPA" \" -*- nroff -*-
.TH "solve_evp_complex_1stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
solve_evp_complex_1stage \- solve the complex eigenvalue problem with the 1-stage ELPA solver
This interface is old and deprecated. It is recommended to use \fBelpa_solve_evp_complex_1stage\fP(3)
.br
.SH SYNOPSIS
......@@ -87,4 +88,4 @@ Solve the complex eigenvalue problem with the 1-stage solver. The ELPA communica
The interface \fBelpa_solve_evp_complex\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "solve_evp_complex_2stage" 3 "Wed Dec 2 2015" "ELPA" \" -*- nroff -*-
.TH "solve_evp_complex_2stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
......@@ -96,4 +96,4 @@ Solve the complex eigenvalue problem with the 2-stage solver. The ELPA communica
The interface \fBelpa_solve_evp_complex\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "solve_evp_real_1stage" 3 "Wed Dec 2 2015" "ELPA" \" -*- nroff -*-
.TH "solve_evp_real_1stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
solve_evp_real_1stage \- solve the real eigenvalue problem with the 1-stage ELPA solver
This interface is old and deprecated. It is recommended to use \fBelpa_solve_evp_real_1stage\fP(3)
.br
.SH SYNOPSIS
......@@ -85,4 +86,4 @@ Solve the real eigenvalue problem with the 1-stage solver. The ELPA communicator
The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_real_2stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
.TH "solve_evp_real_2stage" 3 "Wed Dec 2 2015" "ELPA" \" -*- nroff -*-
.TH "solve_evp_real_2stage" 3 "Tue Oct 18 2016" "ELPA" \" -*- nroff -*-
.ad l
.nh
.SH NAME
......@@ -96,4 +96,4 @@ Solve the real eigenvalue problem with the 2-stage solver. The ELPA communicator
The interface \fBelpa_solve_evp_real\fP(3) is a more flexible alternative.
.br
.SH "SEE ALSO"
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBsolve_evp_real_1stage\fP(3) \fBsolve_evp_complex_1stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
\fBelpa_get_communicators\fP(3) \fBelpa_solve_evp_real\fP(3) \fBelpa_solve_evp_complex\fP(3) \fBelpa_solve_evp_real_1stage\fP(3) \fBelpa_solve_evp_complex_1stage\fP(3) \fBsolve_evp_complex_2stage\fP(3) \fBelpa2_print_kernels\fP(1)
This diff is collapsed.
......@@ -79,22 +79,46 @@ module ELPA2
public :: solve_evp_real_2stage_double
public :: solve_evp_complex_2stage_double
public :: elpa_solve_evp_real_2stage_double
public :: elpa_solve_evp_complex_2stage_double
interface solve_evp_real_2stage
module procedure solve_evp_real_2stage_double
end interface
interface elpa_solve_evp_real_2stage_double
module procedure solve_evp_real_2stage_double
end interface
interface solve_evp_complex_2stage
module procedure solve_evp_complex_2stage_double
end interface
interface elpa_solve_evp_complex_2stage_double
module procedure solve_evp_complex_2stage_double
end interface
#ifdef WANT_SINGLE_PRECISION_REAL
public :: solve_evp_real_2stage_single
public :: elpa_solve_evp_real_2stage_single
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
public :: solve_evp_complex_2stage_single
public :: elpa_solve_evp_complex_2stage_single
#endif
#ifdef WANT_SINGLE_PRECISION_REAL
interface elpa_solve_evp_real_2stage_single
module procedure solve_evp_real_2stage_single
end interface
#endif
#ifdef WANT_SINGLE_PRECISION_COMPLEX
interface elpa_solve_evp_complex_2stage_single
module procedure solve_evp_complex_2stage_single
end interface
#endif
!******
contains
......
......@@ -188,9 +188,9 @@
logical :: successFortran
#ifdef DOUBLE_PRECISION_REAL
successFortran = solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#else
successFortran = solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#endif
if (successFortran) then
success = 1
......@@ -253,9 +253,9 @@
logical :: successFortran
#ifdef DOUBLE_PRECISION_REAL
successFortran = solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_real_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#else
successFortran = solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_real_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
#endif
if (successFortran) then
success = 1
......@@ -334,9 +334,11 @@
logical :: successFortran
#ifdef DOUBLE_PRECISION_COMPLEX
successFortran = solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
mpi_comm_rows, mpi_comm_cols)
#else
successFortran = solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
mpi_comm_rows, mpi_comm_cols)
#endif
if (successFortran) then
success = 1
......@@ -403,9 +405,11 @@
logical :: successFortran
#ifdef DOUBLE_PRECISION_COMPLEX
successFortran = solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)
successFortran = elpa_solve_evp_complex_1stage_double(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, &
mpi_comm_rows, mpi_comm_cols)
#else
successFortran = solve_evp_complex_1stage_single(na, nev, a, lda, ev, q, ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols)